Friedrich Grimminger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1785061/publications.pdf

Version: 2024-02-01

56 3,597 29
papers citations h-in

172457 155660 55 h-index g-index

60 60 docs citations

60 times ranked 4608 citing authors

#	Article	IF	Citations
1	A novel non-invasive and echocardiography-derived method for quantification of right ventricular pressure–volume loops. European Heart Journal Cardiovascular Imaging, 2022, 23, 498-507.	1.2	22
2	Myeloid-cell-specific deletion of inducible nitric oxide synthase protects against smoke-induced pulmonary hypertension in mice. European Respiratory Journal, 2022, 59, 2101153.	6.7	13
3	Unmasking right ventricular-arterial uncoupling during fluid challenge in pulmonary hypertension. Journal of Heart and Lung Transplantation, 2022, 41, 345-355.	0.6	12
4	Severe organising pneumonia following COVID-19. Thorax, 2021, 76, 201-204.	5.6	68
5	Validity of echocardiographic tricuspid regurgitation gradient to screen for new definition of pulmonary hypertension. EClinicalMedicine, 2021, 34, 100822.	7.1	22
6	Right ventricular pressure-volume loop shape and systolic pressure change in pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L715-L725.	2.9	21
7	The effect of long-term doxycycline treatment in a mouse model of cigarette smoke-induced emphysema and pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L903-L915.	2.9	9
8	TRAF2 Is a Novel Ubiquitin E3 Ligase for the Na,K-ATPase β-Subunit That Drives Alveolar Epithelial Dysfunction in Hypercapnia. Frontiers in Cell and Developmental Biology, 2021, 9, 689983.	3.7	2
9	Deficiency of Axl aggravates pulmonary arterial hypertension via BMPR2. Communications Biology, 2021, 4, 1002.	4.4	3
10	Hidden Treasures: Macrophage Long Non-Coding RNAs in Lung Cancer Progression. Cancers, 2021, 13, 4127.	3.7	7
11	Impairment of hypoxic pulmonary vasoconstriction in acute respiratory distress syndrome. European Respiratory Review, 2021, 30, 210059.	7.1	16
12	Adenylate Kinase 4â€"A Key Regulator of Proliferation and Metabolic Shift in Human Pulmonary Arterial Smooth Muscle Cells via Akt and HIF-1α Signaling Pathways. International Journal of Molecular Sciences, 2021, 22, 10371.	4.1	11
13	Interferon Regulatory Factor 9 Promotes Lung Cancer Progression via Regulation of Versican. Cancers, 2021, 13, 208.	3.7	10
14	Epithelial cell plasticity defines heterogeneity in lung cancer. Cellular Signalling, 2020, 65, 109463.	3.6	17
15	Metabolism in tumour-associated macrophages: a quid pro quo with the tumour microenvironment. European Respiratory Review, 2020, 29, 200134.	7.1	25
16	Spatial Density and Distribution of Tumor-Associated Macrophages Predict Survival in Non–Small Cell Lung Carcinoma. Cancer Research, 2020, 80, 4414-4425.	0.9	109
17	Fibroblast Growth Factor—14 Acts as Tumor Suppressor in Lung Adenocarcinomas. Cells, 2020, 9, 1755.	4.1	12
18	Metastasis-Associated Protein 2 Represses NF-κB to Reduce Lung Tumor Growth and Inflammation. Cancer Research, 2020, 80, 4199-4211.	0.9	9

#	Article	IF	CITATIONS
19	NADPH oxidase subunit NOXO1 is a target for emphysema treatment in COPD. Nature Metabolism, 2020, 2, 532-546.	11.9	23
20	Reprogramming of tumor-associated macrophages by targeting \hat{l}^2 -catenin/FOSL2/ARID5A signaling: A potential treatment of lung cancer. Science Advances, 2020, 6, eaaz6105.	10.3	110
21	Macrophage and Tumor Cell Cross-Talk Is Fundamental for Lung Tumor Progression: We Need to Talk. Frontiers in Oncology, 2020, 10, 324.	2.8	76
22	Microenvironmental Th9 and Th17 lymphocytes induce metastatic spreading in lung cancer. Journal of Clinical Investigation, 2020, 130, 3560-3575.	8.2	103
23	A RASSF1A-HIF1 $\hat{l}\pm$ loop drives Warburg effect in cancer and pulmonary hypertension. Nature Communications, 2019, 10, 2130.	12.8	77
24	Evidence for the Fucoidan/P-Selectin Axis as a Therapeutic Target in Hypoxia-induced Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1407-1420.	5.6	39
25	FoxO3 an important player in fibrogenesis and therapeutic target for idiopathic pulmonary fibrosis. EMBO Molecular Medicine, 2018, 10, 276-293.	6.9	85
26	Long-term safety and outcome of intravenous treprostinil via an implanted pump in pulmonary hypertension. Journal of Heart and Lung Transplantation, 2018, 37, 1235-1244.	0.6	26
27	The Giessen Pulmonary Hypertension Registry: Survival in pulmonary hypertension subgroups. Journal of Heart and Lung Transplantation, 2017, 36, 957-967.	0.6	221
28	Mitochondrial Complex IV Subunit 4 Isoform 2 Is Essential for Acute Pulmonary Oxygen Sensing. Circulation Research, 2017, 121, 424-438.	4.5	90
29	Lipoteichoic acids from Staphylococcus aureus stimulate proliferation of human non-small-cell lung cancer cells in vitro. Cancer Immunology, Immunotherapy, 2017, 66, 799-809.	4.2	33
30	Lung cancer–associated pulmonary hypertension: Role of microenvironmental inflammation based on tumor cell–immune cell cross-talk. Science Translational Medicine, 2017, 9, .	12.4	69
31	Procedural safety of a fully implantable intravenous prostanoid pump for pulmonary hypertension. Clinical Research in Cardiology, 2017, 106, 174-182.	3.3	16
32	Selexipag for the treatment of pulmonary arterial hypertension. Expert Opinion on Pharmacotherapy, 2016, 17, 1825-1834.	1.8	3
33	Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma. PLoS ONE, 2015, 10, e0139073.	2.5	101
34	Macrophage and Cancer Cell Cross-talk via CCR2 and CX3CR1 Is a Fundamental Mechanism Driving Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 437-447.	5.6	186
35	Stimulation of Soluble Guanylate Cyclase Prevents Cigarette Smoke–induced Pulmonary Hypertension and Emphysema. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1359-1373.	5.6	80
36	Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nature Medicine, 2014, 20, 1289-1300.	30.7	233

#	Article	IF	CITATIONS
37	Novel and Emerging Therapies for Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 394-400.	5.6	75
38	Classical Transient Receptor Potential Channel 1 in Hypoxia-induced Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1451-1459.	5.6	77
39	Inducible NOS Inhibition Reverses Tobacco-Smoke-Induced Emphysema and Pulmonary Hypertension in Mice. Cell, 2011, 147, 293-305.	28.9	293
40	Role of Epidermal Growth Factor Inhibition in Experimental Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 158-167.	5.6	118
41	Future Perspectives for the Treatment of Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2009, 54, S108-S117.	2.8	62
42	NO and reactive oxygen species are involved in biphasic hypoxic vasoconstriction of isolated rabbit lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L638-L645.	2.9	59
43	Alveolar epithelial barrier functions in ventilated perfused rabbit lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L896-L904.	2.9	23
44	Combination of nonspecific PDE inhibitors with inhaled prostacyclin in experimental pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L1361-L1368.	2.9	37
45	Coaerosolization of Phosphodiesterase Inhibitors Markedly Enhances the Pulmonary Vasodilatory Response to Inhaled Iloprost in Experimental Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1694-1700.	5.6	54
46	Urodilatin, a Natriuretic Peptide Stimulating Particulate Guanylate Cyclase, and the Phosphodiesterase 5 Inhibitor Dipyridamole Attenuate Experimental Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 219-225.	2.9	22
47	The PDE inhibitor zaprinast enhances NO-mediated protection against vascular leakage in reperfused lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L496-L502.	2.9	12
48	Phenotypic characterization of alveolar monocyte recruitment in acute respiratory distress syndrome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L25-L35.	2.9	171
49	Hypoxic vasoconstriction in intact lungs: a role for NADPH oxidase-derived H ₂ O ₂ ?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L683-L690.	2.9	87
50	PAF-induced synthesis of tetraenoic and pentaenoic leukotrienes in the isolated rabbit lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L268-L275.	2.9	18
51	Evidence for a role of protein kinase C in hypoxic pulmonary vasoconstriction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L90-L95.	2.9	43
52	Low-dose Systemic Phosphodiesterase Inhibitors Amplify the Pulmonary Vasodilatory Response to Inhaled Prostacyclin in Experimental Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 1999, 160, 1500-1506.	5.6	73
53	Inhaled Prostacyclin and Iloprost in Severe Pulmonary Hypertension Secondary to Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 1999, 160, 600-607.	5.6	369
54	Use of fish oil to prevent graft rejection. Proceedings of the Nutrition Society, 1998, 57, 577-585.	1.0	8

#	Article	IF	CITATIONS
55	Nitro blue tetrazolium inhibits but does not mimic hypoxic vasoconstriction in isolated rabbit lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L721-L727.	2.9	24
56	Hypoxic Pulmonary Vasoconstriction-Triggered by an Increase in Reactive Oxygen Species?. Novartis Foundation Symposium, 0, , 196-213.	1.1	12