Jeffery B Klauda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1784844/publications.pdf

Version: 2024-02-01

		57681	21843
148	16,033	46	118
papers	citations	h-index	g-index
			15060
155	155	155	15369
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. Journal of Physical Chemistry B, 2010, 114, 7830-7843.	1.2	3,676
2	CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Journal of Chemical Theory and Computation, 2016, 12, 405-413.	2.3	2,567
3	CHARMM-GUI <i>Membrane Builder</i> toward realistic biological membrane simulations. Journal of Computational Chemistry, 2014, 35, 1997-2004.	1.5	1,802
4	CHARMM-GUI Membrane Builder for Mixed Bilayers and Its Application to Yeast Membranes. Biophysical Journal, 2009, 97, 50-58.	0.2	1,346
5	Global Distribution of Methane Hydrate in Ocean Sediment. Energy & 2005, 19, 459-470.	2.5	459
6	CHARMM-GUI <i>Membrane Builder</i> for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. Journal of Chemical Theory and Computation, 2019, 15, 775-786.	2.3	388
7	An ab Initio Study on the Torsional Surface of Alkanes and Its Effect on Molecular Simulations of Alkanes and a DPPC Bilayer. Journal of Physical Chemistry B, 2005, 109, 5300-5311.	1.2	303
8	A Fugacity Model for Gas Hydrate Phase Equilibria. Industrial & Engineering Chemistry Research, 2000, 39, 3377-3386.	1.8	246
9	Simulation-Based Methods for Interpreting X-Ray Data from Lipid Bilayers. Biophysical Journal, 2006, 90, 2796-2807.	0.2	219
10	CHARMM All-Atom Additive Force Field for Sphingomyelin: Elucidation of Hydrogen Bonding and of Positive Curvature. Biophysical Journal, 2014, 107, 134-145.	0.2	192
11	Update of the Cholesterol Force Field Parameters in CHARMM. Journal of Physical Chemistry B, 2012, 116, 203-210.	1.2	185
12	Phase behavior of clathrate hydrates: a model for single and multiple gas component hydrates. Chemical Engineering Science, 2003, 58, 27-41.	1.9	168
13	Molecular Dynamics and NMR Spectroscopy Studies of E.Âcoli Lipopolysaccharide Structure and Dynamics. Biophysical Journal, 2013, 105, 1444-1455.	0.2	153
14	CHARMM36 United Atom Chain Model for Lipids and Surfactants. Journal of Physical Chemistry B, 2014, 118, 547-556.	1.2	143
15	Improving the CHARMM Force Field for Polyunsaturated Fatty Acid Chains. Journal of Physical Chemistry B, 2012, 116, 9424-9431.	1.2	140
16	E.Âcoli Outer Membrane and Interactions with OmpLA. Biophysical Journal, 2014, 106, 2493-2502.	0.2	128
17	CHARMMing: A New, Flexible Web Portal for CHARMM. Journal of Chemical Information and Modeling, 2008, 48, 1920-1929.	2.5	118
18	Dynamical motions of lipids and a finite size effect in simulations of bilayers. Journal of Chemical Physics, 2006, 125, 144710.	1.2	117

#	Article	IF	Citations
19	Cholesterol Flip-Flop: Insights from Free Energy Simulation Studies. Journal of Physical Chemistry B, 2010, 114, 13342-13348.	1.2	109
20	CHARMM-GUI Micelle Builder for Pure/Mixed Micelle and Protein/Micelle Complex Systems. Journal of Chemical Information and Modeling, 2013, 53, 2171-2180.	2.5	99
21	Rotation of Lipids in Membranes: Molecular Dynamics Simulation, 31P Spin-Lattice Relaxation, and Rigid-Body Dynamics. Biophysical Journal, 2008, 94, 3074-3083.	0.2	94
22	Modeling Gas Hydrate Phase Equilibria in Laboratory and Natural Porous Media. Industrial & Engineering Chemistry Research, 2001, 40, 4197-4208.	1.8	91
23	Membrane models of E. coli containing cyclic moieties in the aliphatic lipid chain. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1205-1210.	1.4	89
24	CHARMM-GUI HMMM Builder for Membrane Simulations with the Highly Mobile Membrane-Mimetic Model. Biophysical Journal, 2015, 109, 2012-2022.	0.2	89
25	Bilayer Properties of Lipid A from Various Gram-Negative Bacteria. Biophysical Journal, 2016, 111, 1750-1760.	0.2	88
26	Mesoscale inhomogeneities in aqueous solutions of small amphiphilic molecules. Faraday Discussions, 2013, 167, 217.	1.6	86
27	Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables. Metabolic Engineering, 2017, 44, 1-12.	3.6	83
28	A systematic molecular dynamics simulation study of temperature dependent bilayer structural properties. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2520-2529.	1.4	82
29	Ab Initio Intermolecular Potentials for Gas Hydrates and Their Predictions. Journal of Physical Chemistry B, 2002, 106, 5722-5732.	1.2	80
30	Long-Range Lennard-Jones and Electrostatic Interactions in Interfaces:Â Application of the Isotropic Periodic Sum Method. Journal of Physical Chemistry B, 2007, 111, 4393-4400.	1.2	78
31	Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes. Chemical Reviews, 2019, 119, 6227-6269.	23.0	72
32	Predictions of gas hydrate phase equilibria and amounts in natural sediment porous media. Marine and Petroleum Geology, 2003, 20, 459-470.	1.5	67
33	How Tolerant are Membrane Simulations with Mismatch in Area per Lipid between Leaflets?. Journal of Chemical Theory and Computation, 2015 , 11 , 3466 - 3477 .	2.3	64
34	CHARMM-GUI Input Generator for NAMD, Gromacs, Amber, Openmm, and CHARMM/OpenMM Simulations using the CHARMM36 Additive Force Field. Biophysical Journal, 2016, 110, 641a.	0.2	63
35	CHARMM-GUI Supports Hydrogen Mass Repartitioning and Different Protonation States of Phosphates in Lipopolysaccharides. Journal of Chemical Information and Modeling, 2021, 61, 831-839.	2.5	59
36	Modeling Yeast Organelle Membranes and How Lipid Diversity Influences Bilayer Properties. Biochemistry, 2015, 54, 6852-6861.	1.2	58

#	Article	IF	CITATIONS
37	Investigation of phase transitions of saturated phosphocholine lipid bilayers via molecular dynamics simulations. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1489-1501.	1.4	57
38	Probing the importance of lipid diversity in cell membranes via molecular simulation. Chemistry and Physics of Lipids, 2015, 192, 12-22.	1.5	56
39	Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes. Journal of Chemical Physics, 2015, 143, 243144.	1.2	55
40	Chapter 1 Considerations for Lipid Force Field Development. Current Topics in Membranes, 2008, , 1-48.	0.5	54
41	Molecular Simulations of Mixed Lipid Bilayers with Sphingomyelin, Glycerophospholipids, and Cholesterol. Journal of Physical Chemistry B, 2017, 121, 5197-5208.	1.2	54
42	Critical Sequence Hotspots for Binding of Novel Coronavirus to Angiotensin Converter Enzyme as Evaluated by Molecular Simulations. Journal of Physical Chemistry B, 2020, 124, 10034-10047.	1.2	54
43	Adjacent Gauche Stabilization in Linear Alkanes:Â Implications for Polymer Models and Conformational Analysis. Journal of Physical Chemistry B, 2005, 109, 15684-15686.	1.2	53
44	Collective and Noncollective Models of NMR Relaxation in Lipid Vesicles and Multilayers. Journal of Physical Chemistry B, 2008, 112, 5924-5929.	1.2	53
45	An extensive simulation study of lipid bilayer properties with different head groups, acyl chain lengths, and chain saturations. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 3093-3104.	1.4	51
46	Comparison of Additive and Polarizable Models with Explicit Treatment of Long-Range Lennard-Jones Interactions Using Alkane Simulations. Journal of Chemical Theory and Computation, 2018, 14, 948-958.	2.3	50
47	Lipid chain branching at the iso- and anteiso-positions in complex chlamydia membranes: A molecular dynamics study. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 323-331.	1.4	49
48	Peripheral membrane proteins: Tying the knot between experiment and computation. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1584-1593.	1.4	48
49	Influence of Cholesterol on Phospholipid Bilayer Structure and Dynamics. Journal of Physical Chemistry B, 2016, 120, 11761-11772.	1.2	47
50	CHARMM36 Lipid Force Field with Explicit Treatment of Long-Range Dispersion: Parametrization and Validation for Phosphatidylethanolamine, Phosphatidylglycerol, and Ether Lipids. Journal of Chemical Theory and Computation, 2021, 17, 1581-1595.	2.3	45
51	HM-IE:  Quantum Chemical Hybrid Methods for Calculating Interaction Energies. Journal of Physical Chemistry A, 2004, 108, 107-112.	1.1	44
52	Lipid Membranes with a Majority of Cholesterol: Applications to the Ocular Lens and Aquaporin 0. Journal of Physical Chemistry B, 2011, 115, 6455-6464.	1.2	44
53	CHARMMâ€GUI <i>Nanodisc Builder</i> for modeling and simulation of various nanodisc systems. Journal of Computational Chemistry, 2019, 40, 893-899.	1.5	42
54	Membrane permeability of small molecules from unbiased molecular dynamics simulations. Journal of Chemical Physics, 2020, 153, 124107.	1.2	42

#	Article	IF	CITATIONS
55	Membrane-Binding Mechanism of a Peripheral Membrane Protein through Microsecond Molecular Dynamics Simulations. Journal of Molecular Biology, 2012, 423, 847-861.	2.0	41
56	Influence of Ganglioside GM1 Concentration on Lipid Clustering and Membrane Properties and Curvature. Biophysical Journal, 2016, 111, 1987-1999.	0.2	41
57	Lipopolysaccharide Membrane Building and Simulation. Methods in Molecular Biology, 2015, 1273, 391-406.	0.4	41
58	Examination of Mixtures Containing Sphingomyelin and Cholesterol by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2017, 121, 4833-4844.	1.2	40
59	Mesoscale Phenomena in Ternary Solutions of Tertiary Butyl Alcohol, Water, and Propylene Oxide. Journal of Physical Chemistry B, 2014, 118, 5994-6006.	1.2	39
60	Semi-automated Optimization of the CHARMM36 Lipid Force Field to Include Explicit Treatment of Long-Range Dispersion. Journal of Chemical Theory and Computation, 2021, 17, 1562-1580.	2.3	39
61	Preferred Orientations of Phosphoinositides in Bilayers and Their Implications in Protein Recognition Mechanisms. Journal of Physical Chemistry B, 2014, 118, 4315-4325.	1.2	38
62	Gas Hydrate Structure and Pressure Predictions Based on an Updated Fugacity-Based Model with the PSRK Equation of State. Industrial & Engineering Chemistry Research, 2011, 50, 148-157.	1.8	36
63	Molecular Dynamics Simulations of the Cx26 Hemichannel: Insights into Voltage-Dependent Loop-Gating. Biophysical Journal, 2012, 102, 1341-1351.	0.2	35
64	Binding and release of cholesterol in the Osh4 protein of yeast. Proteins: Structure, Function and Bioinformatics, 2009, 75, 468-477.	1.5	33
65	Simulations of Pure Ceramide and Ternary Lipid Mixtures as Simple Interior Stratum Corneum Models. Journal of Physical Chemistry B, 2018, 122, 2757-2768.	1.2	33
66	Molecular Structure of the Long Periodicity Phase in the Stratum Corneum. Journal of the American Chemical Society, 2019, 141, 16930-16943.	6.6	33
67	Effect of Membrane Lipid Packing on Stable Binding of the ALPS Peptide. Journal of Chemical Theory and Computation, 2019, 15, 1418-1429.	2.3	33
68	Monte Carlo Simulation of O2and N2Adsorption in Nanoporous Carbon (C168Schwarzite). Langmuir, 2003, 19, 3512-3518.	1.6	32
69	An ab Initio Study on the Effect of Carbon Surface Curvature and Ring Structure on N2(O2)â^Carbon Intermolecular Potentials. Journal of Physical Chemistry B, 2004, 108, 9842-9851.	1.2	30
70	Sugar Binding in Lactose Permease: Anomeric State of a Disaccharide Influences Binding Structure. Journal of Molecular Biology, 2007, 367, 1523-1534.	2.0	30
71	Probing the Periplasmic-Open State of Lactose Permease in Response to Sugar Binding and Proton Translocation. Journal of Molecular Biology, 2010, 404, 506-521.	2.0	30
72	Microsecond-timescale simulations suggest 5-HT–mediated preactivation of the 5-HT3Aserotonin receptor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 405-414.	3.3	29

#	Article	IF	Citations
73	Parameterization of the CHARMM All-Atom Force Field for Ether Lipids and Model Linear Ethers. Journal of Physical Chemistry B, 2018, 122, 6744-6754.	1.2	28
74	Biophysical Changes of Lipid Membranes in the Presence of Ethanol at Varying Concentrations. Journal of Physical Chemistry B, 2015, 119, 13134-13141.	1.2	27
75	Physical Properties of Bacterial Outer Membrane Models: Neutron Reflectometry & Discounting Molecular Simulation. Biophysical Journal, 2019, 116, 1095-1104.	0.2	27
76	Orientation of Fluorescent Lipid Analogue BODIPY-PC to Probe Lipid Membrane Properties: Insights from Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2011, 115, 6157-6165.	1.2	26
77	Molecular Dynamics Simulations of Ceramide and Ceramide-Phosphatidylcholine Bilayers. Journal of Physical Chemistry B, 2017, 121, 10091-10104.	1.2	26
78	Dual Action of Hydrotropes at the Water/Oil Interface. Journal of Physical Chemistry C, 2017, 121, 16423-16431.	1.5	24
79	How Do Ethanolamine Plasmalogens Contribute to Order and Structure of Neurological Membranes?. Journal of Physical Chemistry B, 2020, 124, 828-839.	1.2	23
80	Exploring dynamics and network analysis of spike glycoprotein of SARS-COV-2. Biophysical Journal, 2021, 120, 2902-2913.	0.2	22
81	Lipid-Linked Oligosaccharides in Membranes Sample Conformations That Facilitate Binding to Oligosaccharyltransferase. Biophysical Journal, 2014, 107, 1885-1895.	0.2	21
82	Reproducible Performance Improvements to Monolayer MoS ₂ Transistors through Exposed Material Forming Gas Annealing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16683-16692.	4.0	21
83	Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes. Journal of Chemical Physics, 2017, 146, 215103.	1.2	20
84	Structure and Permeability of Ceramide Bilayers and Multilayers. Journal of Physical Chemistry B, 2019, 123, 2525-2535.	1.2	19
85	Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein. Biophysical Journal, 2015, 109, 2090-2100.	0.2	18
86	Models for the <i>Stratum Corneum</i> Lipid Matrix: Effects of Ceramide Concentration, Ceramide Hydroxylation, and Free Fatty Acid Protonation. Journal of Physical Chemistry B, 2018, 122, 11996-12008.	1.2	18
87	Preferred Binding Mechanism of Osh4's Amphipathic Lipid-Packing Sensor Motif, Insights from Molecular Dynamics. Journal of Physical Chemistry B, 2018, 122, 9713-9723.	1.2	18
88	Molecular dynamics simulations of ethanol permeation through single and double-lipid bilayers. Journal of Chemical Physics, 2020, 153, 125101.	1.2	18
89	GraphVAMPNet, using graph neural networks and variational approach to Markov processes for dynamical modeling of biomolecules. Journal of Chemical Physics, 2022, 156, 184103.	1.2	18
90	Perspective: Computational modeling of accurate cellular membranes with molecular resolution. Journal of Chemical Physics, 2018, 149, 220901.	1.2	17

#	Article	IF	Citations
91	Hierarchical Modeling O2 and N2 Adsorption in C168 Schwarzite:  From Quantum Mechanics to Molecular Simulation. Journal of Physical Chemistry B, 2004, 108, 9852-9860.	1.2	16
92	Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2134-2144.	1.4	16
93	Update of the CHARMM36 United Atom Chain Model for Hydrocarbons and Phospholipids. Journal of Physical Chemistry B, 2020, 124, 6797-6812.	1.2	16
94	Influence of Ester-Modified Lipids on Bilayer Structure. Langmuir, 2013, 29, 14196-14203.	1.6	15
95	Hierarchical Modeling N2Adsorption on the Surface of and within a C60Crystal:Â From Quantum Mechanics to Molecular Simulation. Journal of Physical Chemistry B, 2005, 109, 4731-4737.	1.2	13
96	Quantum capacitance-limited MoS ₂ biosensors enable remote label-free enzyme measurements. Nanoscale, 2019, 11, 15622-15632.	2.8	13
97	STâ€analyzer: A webâ€based user interface for simulation trajectory analysis. Journal of Computational Chemistry, 2014, 35, 957-963.	1.5	12
98	Water Orientation at Ceramide/Water Interfaces Studied by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy and Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2016, 120, 23692-23697.	1.5	12
99	CHARMM Force Field Parameters for Nitroalkanes and Nitroarenes. Journal of Chemical Theory and Computation, 2008, 4, 107-115.	2.3	11
100	Variational embedding of protein folding simulations using Gaussian mixture variational autoencoders. Journal of Chemical Physics, 2021, 155, 194108.	1.2	11
101	Two sterols, two bilayers: insights on membrane structure from molecular dynamics. Molecular Simulation, 2017, 43, 1179-1188.	0.9	10
102	The Role of Lipid Interactions in Simulations of the \hat{l}_{\pm} -Hemolysin Ion-Channel-Forming Toxin. Biophysical Journal, 2018, 115, 1720-1730.	0.2	10
103	Location and Conformational Ensemble of Menaquinone and Menaquinol, and Protein–Lipid Modulations in Archaeal Membranes. Journal of Physical Chemistry B, 2021, 125, 4714-4725.	1.2	10
104	Molecular dynamics simulations of palmitoyloleoylphosphatidylglycerol bilayers. Molecular Simulation, 2015, 41, 948-954.	0.9	9
105	Mannobioseâ€Grafting Shifts PEI Charge and Biphasic Dependence on pH. Macromolecular Chemistry and Physics, 2019, 220, 1800423.	1.1	9
106	Setting Up All-Atom Molecular Dynamics Simulations to Study the Interactions of Peripheral Membrane Proteins with Model Lipid Bilayers. Methods in Molecular Biology, 2019, 1949, 325-339.	0.4	8
107	Considerations of Recent All-Atom Lipid Force Field Development. Journal of Physical Chemistry B, 2021, 125, 5676-5682.	1.2	8
108	Modeling Pseudomonas aeruginosa inner plasma membrane in planktonic and biofilm modes. Journal of Chemical Physics, 2018, 149, 215102.	1.2	7

#	Article	IF	CITATIONS
109	Structural Events in a Bacterial Uniporter Leading to Translocation of Glucose to the Cytosol. Journal of Molecular Biology, 2018, 430, 3337-3352.	2.0	7
110	Probing the pH Effects on Sugar Binding to a Polysaccharide Lyase. Journal of Physical Chemistry B, 2019, 123, 7123-7136.	1.2	7
111	Estimating localization of various statins within a POPC bilayer. Chemistry and Physics of Lipids, 2021, 236, 105074.	1.5	7
112	All-Atom Modeling of Complex Cellular Membranes. Langmuir, 2022, 38, 3-17.	1.6	6
113	Sterol Binding and Membrane Lipid Attachment to the Osh4 Protein of Yeast. Journal of Physical Chemistry B, 2010, 114, 13562-13573.	1.2	5
114	Interplay of Specific Trans- and Juxtamembrane Interfaces in Plexin A3 Dimerization and Signal Transduction. Biochemistry, 2016, 55, 4928-4938.	1.2	5
115	Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1541-1552.	1.4	5
116	A replica exchange umbrella sampling (REUS) approach to predict host–guest binding free energies in SAMPL8 challenge. Journal of Computer-Aided Molecular Design, 2021, 35, 667-677.	1.3	5
117	A Comparative Study of Nitrogen Physisorption on Different C70Crystal Structures Using an Ab Initio Based Potential. Journal of Physical Chemistry B, 2005, 109, 17267-17273.	1.2	4
118	Interfacial properties of aqueous solutions of butanol isomers and cyclohexane. Fluid Phase Equilibria, 2020, 513, 112551.	1.4	4
119	Rapid, quantitative therapeutic screening for Alzheimer's enzymes enabled by optimal signal transduction with transistors. Analyst, The, 2020, 145, 2925-2936.	1.7	4
120	Simulations of Diabetic and Non-Diabetic Peripheral Nerve Myelin Lipid Bilayers. Journal of Physical Chemistry B, 2021, 125, 6201-6213.	1.2	4
121	Symmetric and Asymmetric Models for the <i>Arabidopsis thaliana</i> Plasma Membrane: A Simulation Study. Journal of Physical Chemistry B, 2021, 125, 11418-11431.	1.2	4
122	Modeling the membrane binding mechanism of a lipid transport protein Osh4 to single membranes. Biophysical Journal, 2022, 121, 1560-1575.	0.2	4
123	Leaflet Asymmetry Modeling in the Lipid Composition of <i>Escherichia coli</i> Cytoplasmic Membranes. Journal of Physical Chemistry B, 2022, 126, 184-196.	1.2	4
124	Probing the Ripple Phase of Lipid Bilayers using Molecular Simulations. Biophysical Journal, 2016, 110, 86a.	0.2	2
125	Engineering the Microbial Cell Membrane To Improve Bioproduction. ACS Symposium Series, 2018, , 25-39.	0.5	2
126	Aggregation of modified hexabenzocoronenes as models for early stage asphaltene self-assembly. Molecular Simulation, 2018, 44, 992-1003.	0.9	2

#	Article	IF	CITATIONS
127	A reengineered common chain cytokine augments CD8+ T cell–dependent immunotherapy. JCI Insight, 2022, 7, .	2.3	2
128	Computational Study of the Allosteric Effects of p5 on CDK5–p25 Hyperactivity as Alternative Inhibitory Mechanisms in Neurodegeneration. Journal of Physical Chemistry B, 2022, 126, 5033-5044.	1.2	2
129	Developing CHARMM-Compatible Lipid Parameters for Ceramides and United Atom Chains. Biophysical Journal, 2013, 104, 591a.	0.2	1
130	The simultaneous mass and energy evaporation (SM2E) model. Journal of Occupational and Environmental Hygiene, 2016, 13, 243-253.	0.4	1
131	Simulation of Linoleoyl-Containing Pure Lipid Bilayer and Soybean Plasma Membranes. Biophysical Journal, 2017, 112, 82a.	0.2	1
132	Isothermal Titration Calorimetry of Be ²⁺ with Phosphatidylserine Models Guides All-Atom Force-Field Development for Lipid–Ion Interactions. Journal of Physical Chemistry B, 2019, 123, 1554-1565.	1.2	1
133	Modifying the CHARMM36 Lipid Force Field for LJ-PME Simulations. Biophysical Journal, 2020, 118, 87a.	0.2	1
134	Impact of PIP2 Lipids, Force Field Parameters, and Mutational Analysis on the Binding of the Osh4's α ₆ –α ₇ Domain. Journal of Physical Chemistry B, 2021, 125, 5296-5308.	1.2	1
135	Binding of A Natural Sterol to the Osh4 Protein of Yeast and Membrane Attachment. Biophysical Journal, 2010, 98, 241a.	0.2	0
136	A Modified Lipid Force Field for Charmm: Development and Application to Single-Celled Organism Membranes. Biophysical Journal, 2010, 98, 282a.	0.2	0
137	Molecular Dynamics Simulations on the Periplasmic-Open State Lactose Permease. Biophysical Journal, 2015, 108, 466a.	0.2	0
138	Effects of Spin-Labels on Membrane Burial Depth of MARCKS-ED Residues. Biophysical Journal, 2016, 111, 1600-1603.	0.2	0
139	Analyzing the Effects of Lipid Type on the α-Hemolysin Nanopore andÂ5HT3 Receptor Structure and Gating using Molecular Dynamics Simulations. Biophysical Journal, 2017, 112, 275a-276a.	0.2	0
140	CHARMM-GUI Lecture Series on Molecular Modeling and Simulation. Biophysical Journal, 2018, 114, 184a.	0.2	0
141	Probing Plexin A3 Dimerization and the Importance of the Near Membrane Extracellular Residues. Biophysical Journal, 2018, 114, 423a.	0.2	0
142	Label-Free Enzyme Activity Measurements with Quantum-Limited Biosensors. Biophysical Journal, 2019, 116, 146a.	0.2	0
143	Modeling Lipid Membranes. , 2019, , 741-759.		0
144	Update of the CHARMM36 United Atom Chain Model for Lipids. Biophysical Journal, 2020, 118, 88a.	0.2	0

#	Article	lF	CITATIONS
145	Investigation of Allosteric Inhibition Mechanisms by the Peptide p5 on the Alzheimer's Disease (AD) Pathological Complex cdk5-p25 through Molecular Dynamics Simulations. Biophysical Journal, 2020, 118, 206a.	0.2	0
146	Virtual Issue on Docking. Journal of Physical Chemistry B, 2021, 125, 5455-5457.	1.2	0
147	Modeling Lipid Membranes. , 2016, , 1-19.		O
148	Experimental investigation of the mechanism of lipid-binding of the ALPS-like motif of Osh4 protein. Biophysical Journal, 2022, 121, 221a-222a.	0.2	O