David Baltimore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1784227/publications.pdf

Version: 2024-02-01

170 papers 52,471 citations

92 h-index 166 g-index

178 all docs

178 docs citations

178 times ranked

41720 citing authors

#	Article	IF	CITATIONS
1	Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nature Medicine, 2022, 28, 1022-1030.	30.7	34
2	Alternative splicing coupled with transcript degradation modulates OAS1g antiviral activity. Rna, 2020, 26, 126-136.	3 . 5	15
3	Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line. Nature Communications, 2020, 11, 2345.	12.8	74
4	Sequence-dependent dynamics of synthetic and endogenous RSSs in V(D)J recombination. Nucleic Acids Research, 2020, 48, 6726-6739.	14.5	8
5	Myeloid cell–targeted miR-146a mimic inhibits NF-κB–driven inflammation and leukemia progression in vivo. Blood, 2020, 135, 167-180.	1.4	88
6	MATE-Seq: microfluidic antigen-TCR engagement sequencing. Lab on A Chip, 2019, 19, 3011-3021.	6.0	36
7	Alternative mRNA splicing in cancer immunotherapy. Nature Reviews Immunology, 2019, 19, 675-687.	22.7	169
8	Sensitive Detection and Analysis of Neoantigen-Specific T Cell Populations from Tumors and Blood. Cell Reports, 2019, 28, 2728-2738.e7.	6.4	65
9	T cell antigen discovery via signaling and antigen-presenting bifunctional receptors. Nature Methods, 2019, 16, 191-198.	19.0	103
10	T cell antigen discovery via trogocytosis. Nature Methods, 2019, 16, 183-190.	19.0	117
10	T cell antigen discovery via trogocytosis. Nature Methods, 2019, 16, 183-190. Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12416-12421.	19.0 7.1	37
	Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages.		
11	Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12416-12421. The Cellular Immunotherapy Revolution: Arming the Immune System for Precision Therapy. Trends in	7.1	37
11 12	Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12416-12421. The Cellular Immunotherapy Revolution: Arming the Immune System for Precision Therapy. Trends in Immunology, 2019, 40, 292-309. IND-Enabling Studies for a Clinical Trial to Genetically Program a Persistent Cancer-Targeted Immune	7.1 6.8	37 61
11 12 13	Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12416-12421. The Cellular Immunotherapy Revolution: Arming the Immune System for Precision Therapy. Trends in Immunology, 2019, 40, 292-309. IND-Enabling Studies for a Clinical Trial to Genetically Program a Persistent Cancer-Targeted Immune System. Clinical Cancer Research, 2019, 25, 1000-1011. BUD13 Promotes a Type I Interferon Response by Countering Intron Retention in Irf7. Molecular Cell,	7.1 6.8 7.0	37 61 9
11 12 13	Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12416-12421. The Cellular Immunotherapy Revolution: Arming the Immune System for Precision Therapy. Trends in Immunology, 2019, 40, 292-309. IND-Enabling Studies for a Clinical Trial to Genetically Program a Persistent Cancer-Targeted Immune System. Clinical Cancer Research, 2019, 25, 1000-1011. BUD13 Promotes a Type I Interferon Response by Countering Intron Retention in Irf7. Molecular Cell, 2019, 73, 803-814.e6.	7.1 6.8 7.0 9.7	37 61 9 39
11 12 13 14	Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12416-12421. The Cellular Immunotherapy Revolution: Arming the Immune System for Precision Therapy. Trends in Immunology, 2019, 40, 292-309. IND-Enabling Studies for a Clinical Trial to Genetically Program a Persistent Cancer-Targeted Immune System. Clinical Cancer Research, 2019, 25, 1000-1011. BUD13 Promotes a Type I Interferon Response by Countering Intron Retention in Irf7. Molecular Cell, 2019, 73, 803-814.e6. Sixty Years of Discovery. Annual Review of Immunology, 2019, 37, 1-17. Characterization of Postinfusion Phenotypic Differences in Fresh Versus Cryopreserved TCR	7.1 6.8 7.0 9.7	37 61 9 39

#	Article	IF	CITATIONS
19	Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell, 2018, 172, 549-563.e16.	28.9	226
20	Epigenetic silencing of miR-125b is required for normal B-cell development. Blood, 2018, 131, 1920-1930.	1.4	40
21	Functional TCR T cell screening using single-cell droplet microfluidics. Lab on A Chip, 2018, 18, 3733-3749.	6.0	132
22	Heterogeneous Responses of Hematopoietic Stem Cells to Inflammatory Stimuli Are Altered with Age. Cell Reports, 2018, 25, 2992-3005.e5.	6.4	127
23	Isolation and characterization of NY-ESO-1–specific T cell receptors restricted on various MHC molecules. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10702-E10711.	7.1	50
24	Dendritic cells efficiently transmit HIV to T Cells in a tenofovir and raltegravir insensitive manner. PLoS ONE, 2018, 13, e0189945.	2.5	10
25	A kinetic investigation of interacting, stimulated T cells identifies conditions for rapid functional enhancement, minimal phenotype differentiation, and improved adoptive cell transfer tumor eradication. PLoS ONE, 2018, 13, e0191634.	2.5	12
26	Antibody gene transfer with adenoâ€associated viral vectors as a method for <scp>HIV</scp> prevention. Immunological Reviews, 2017, 275, 324-333.	6.0	51
27	30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell, 2017, 168, 37-57.	28.9	1,437
28	HIV-1 Conserved Mosaics Delivered by Regimens with Integration-Deficient DC-Targeting Lentiviral Vector Induce Robust T Cells. Molecular Therapy, 2017, 25, 494-503.	8.2	19
29	Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nature Methods, 2017, 14, 521-530.	19.0	165
30	Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. Journal of Biological Chemistry, 2017, 292, 732-747.	3.4	74
31	An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nature Communications, 2017, 8, 851.	12.8	191
32	Dendritic cell–targeted lentiviral vector immunization uses pseudotransduction and DNA-mediated STING and cGAS activation. Science Immunology, 2017, 2, .	11.9	13
33	Photonâ€Induced Nearâ€Field Electron Microscopy of Eukaryotic Cells. Angewandte Chemie - International Edition, 2017, 56, 11498-11501.	13.8	13
34	Photonâ€Induced Nearâ€Field Electron Microscopy of Eukaryotic Cells. Angewandte Chemie, 2017, 129, 11656-11659.	2.0	0
35	Preparation of peptide–MHC and T-cell receptor dextramers by biotinylated dextran doping. BioTechniques, 2017, 62, 123-130.	1.8	22
36	Deficiency of Nuclear Factor-κB c-Rel Accelerates the Development of Autoimmune Diabetes in NOD Mice. Diabetes, 2016, 65, 2367-2379.	0.6	19

#	Article	IF	CITATIONS
37	MicroRNAs as regulatory elements in immune system logic. Nature Reviews Immunology, 2016, 16, 279-294.	22.7	616
38	The boldness of philanthropists. Science, 2016, 353, 1473-1473.	12.6	3
39	RNA-binding protein Lin28 in cancer and immunity. Cancer Letters, 2016, 375, 108-113.	7.2	61
40	Domain-swapped T cell receptors improve the safety of TCR gene therapy. ELife, 2016, 5, .	6.0	48
41	Single-molecule analysis of RAG-mediated V(D)J DNA cleavage. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1715-23.	7.1	20
42	The MicroRNA-132 and MicroRNA-212 Cluster Regulates Hematopoietic Stem Cell Maintenance and Survival with Age by Buffering FOXO3 Expression. Immunity, 2015, 42, 1021-1032.	14.3	84
43	Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody Gene Transfer Protects Nonhuman Primates from Mucosal Simian-Human Immunodeficiency Virus Infection. Journal of Virology, 2015, 89, 8334-8345.	3.4	100
44	The microRNA-212/132 cluster regulates B cell development by targeting Sox4. Journal of Experimental Medicine, 2015, 212, 1679-1692.	8.5	72
45	The microRNA-212/132 cluster regulates B cell development by targeting Sox4. Journal of Cell Biology, 2015, 210, 2107OIA191.	5.2	1
46	MicroRNA-146a Provides Feedback Regulation of Lyme Arthritis but Not Carditis during Infection with Borrelia burgdorferi. PLoS Pathogens, 2014, 10, e1004212.	4.7	38
47	Vectored antibody gene delivery protects against <i>Plasmodium falciparum</i> sporozoite challenge in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12528-12532.	7.1	60
48	Broadly neutralizing antibodies abrogate established hepatitis C virus infection. Science Translational Medicine, 2014, 6, 254ra129.	12.4	204
49	Heme-Mediated SPI-C Induction Promotes Monocyte Differentiation into Iron-Recycling Macrophages. Cell, 2014, 156, 1223-1234.	28.9	359
50	Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nature Medicine, 2014, 20, 296-300.	30.7	212
51	Adoptive Transfer of MART-1 T-Cell Receptor Transgenic Lymphocytes and Dendritic Cell Vaccination in Patients with Metastatic Melanoma. Clinical Cancer Research, 2014, 20, 2457-2465.	7.0	204
52	Conversion of Danger Signals into Cytokine Signals by Hematopoietic Stem and Progenitor Cells for Regulation of Stress-Induced Hematopoiesis. Cell Stem Cell, 2014, 14, 445-459.	11.1	276
53	Dual mechanisms by which miR-125b represses IRF4 to induce myeloid and B-cell leukemias. Blood, 2014, 124, 1502-1512.	1.4	51
54	The <scp>Y</scp> in and <scp>Y</scp> ang of micro <scp>RNA</scp> s: leukemia and immunity. Immunological Reviews, 2013, 253, 129-145.	6.0	53

#	Article	IF	CITATIONS
55	Allelic Exclusion and Peripheral Reconstitution by TCR Transgenic T Cells Arising From Transduced Human Hematopoietic Stem/Progenitor Cells. Molecular Therapy, 2013, 21, 1044-1054.	8.2	49
56	Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nature Biotechnology, 2013, 31, 647-652.	17.5	121
57	Activation of the Transcriptional Function of the NF-κB Protein c-Rel by <i>O</i> -GlcNAc Glycosylation. Science Signaling, 2013, 6, ra75.	3.6	152
58	RNA splicing regulates the temporal order of TNF-induced gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11934-11939.	7.1	77
59	MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. ELife, 2013, 2, e00537.	6.0	120
60	Renato Dulbecco (1914–2012). Science, 2012, 335, 1587-1587.	12.6	4
61	EHMT1 Protein Binds to Nuclear Factor-κB p50 and Represses Gene Expression. Journal of Biological Chemistry, 2012, 287, 31207-31217.	3.4	37
62	<i>miR-146a</i> controls the resolution of T cell responses in mice. Journal of Experimental Medicine, 2012, 209, 1655-1670.	8.5	251
63	As Good As It Gets? The Problem of HIV Persistence despite Antiretroviral Drugs. Cell Host and Microbe, 2012, 12, 132-138.	11.0	35
64	Epistasis between MicroRNAs 155 and 146a during T Cell-Mediated Antitumor Immunity. Cell Reports, 2012, 2, 1697-1709.	6.4	154
65	Regulation of Monocyte Functional Heterogeneity by miR-146a and Relb. Cell Reports, 2012, 1, 317-324.	6.4	105
66	Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature, 2012, 481, 81-84.	27.8	488
67	Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4233-4238.	7.1	143
68	MicroRNAs and Hematopoietic Cell Development. Current Topics in Developmental Biology, 2012, 99, 145-174.	2.2	55
69	Use of Mutated Self-Cleaving 2A Peptides as a Molecular Rheostat to Direct Simultaneous Formation of Membrane and Secreted Anti-HIV Immunoglobulins. PLoS ONE, 2012, 7, e50438.	2.5	13
70	microRNA Regulation of Inflammatory Responses. Annual Review of Immunology, 2012, 30, 295-312.	21.8	814
71	MicroRNAs, new effectors and regulators of NFâ€PB. Immunological Reviews, 2012, 246, 205-220.	6.0	214
72	NF-κB is 25. Nature Immunology, 2011, 12, 683-685.	14.5	143

#	Article	IF	Citations
73	MicroRNA-125b Potentiates Macrophage Activation. Journal of Immunology, 2011, 187, 5062-5068.	0.8	286
74	Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature, 2011, 477, 95-98.	27.8	502
75	Sam68 Is Required for Both NF-ήB Activation and Apoptosis Signaling by the TNF Receptor. Molecular Cell, 2011, 43, 167-179.	9.7	71
76	<i>miR-146a</i> is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. Journal of Experimental Medicine, 2011, 208, 1189-1201.	8.5	780
77	Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1408-16.	7.1	97
78	NF-κB dysregulation in microRNA-146a–deficient mice drives the development of myeloid malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9184-9189.	7.1	342
79	A Computational-Experimental Approach Identifies Mutations That Enhance Surface Expression of an Oseltamivir-Resistant Influenza Neuraminidase. PLoS ONE, 2011, 6, e22201.	2.5	46
80	MicroRNA-155 Promotes Autoimmune Inflammation by Enhancing Inflammatory T Cell Development. Immunity, 2010, 33, 607-619.	14.3	800
81	MicroRNA-34a Perturbs B Lymphocyte Development by Repressing the Forkhead Box Transcription Factor Foxp1. Immunity, 2010, 33, 48-59.	14.3	219
82	Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology, 2010, 10, 111-122.	22.7	1,391
83	Lentiviral Vector Delivery of Human Interleukin-7 (hlL-7) to Human Immune System (HIS) Mice Expands T Lymphocyte Populations. PLoS ONE, 2010, 5, e12009.	2.5	61
84	MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14235-14240.	7.1	250
85	Permissive Secondary Mutations Enable the Evolution of Influenza Oseltamivir Resistance. Science, 2010, 328, 1272-1275.	12.6	606
86	Function of miR-146a in Controlling Treg Cell-Mediated Regulation of Th1 Responses. Cell, 2010, 142, 914-929.	28.9	974
87	Inositol phosphatase SHIP1 is a primary target of miR-155. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7113-7118.	7.1	732
88	Discovering NF-ÂB. Cold Spring Harbor Perspectives in Biology, 2009, 1, a000026-a000026.	5.5	48
89	HIV-1 Gag-specific immunity induced by a lentivector-based vaccine directed to dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20382-20387.	7.1	48
90	Regulation of NF-κB activity through lysine monomethylation of p65. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18972-18977.	7.1	198

#	Article	IF	Citations
91	The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nature Immunology, 2009, 10, 281-288.	14.5	443
92	Engineered lentivector targeting of dendritic cells for in vivo immunization. Nature Biotechnology, 2008, 26, 326-334.	17.5	191
93	MicroRNAs: new regulators of immune cell development and function. Nature Immunology, 2008, 9, 839-845.	14.5	1,043
94	CD4+CD25â^' T Cells Transduced to Express MHC Class I-Restricted Epitope-Specific TCR Synthesize Th1 Cytokines and Exhibit MHC Class I-Restricted Cytolytic Effector Function in a Human Melanoma Model. Journal of Immunology, 2008, 181, 1063-1070.	0.8	43
95	Science for the Globe. Science, 2008, 319, 697-697.	12.6	2
96	Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. Journal of Experimental Medicine, 2008, 205, 585-594.	8.5	644
97	The Preoccupations of Twenty-First-Century Biology. , 2008, , 1-5.		1
98	MicroRNA-155 is induced during the macrophage inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1604-1609.	7.1	1,679
99	MicroRNAs and Immunity: Tiny Players in a Big Field. Immunity, 2007, 26, 133-137.	14.3	327
100	NF- \hat{l}° B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12481-12486.	7.1	4,022
101	Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986. 46: 705-716. Journal of Immunology, 2006, 177, 7485-96.	0.8	20
102	Achieving Stability of Lipopolysaccharide-Induced NF-κB Activation. Science, 2005, 309, 1854-1857.	12.6	557
103	Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4518-4523.	7.1	113
104	One Nucleotide in a κB Site Can Determine Cofactor Specificity for NF-κB Dimers. Cell, 2004, 118, 453-464.	28.9	365
105	Generation of functional antigen-specific T cells in defined genetic backgrounds by retrovirus-mediated expression of TCR cDNAs in hematopoietic precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6204-6209.	7.1	57
106	The lîºB-NF-κB Signaling Module: Temporal Control and Selective Gene Activation. Science, 2002, 298, 1241-1245.	12.6	1,672
107	Essential roles of the ^{ĵº} light chain intronic enhancer and 3′ enhancer in ^{ĵº} rearrangement and demethylation. Nature Immunology, 2002, 3, 463-468.	14.5	122
108	A cellular rescue team. Nature, 2000, 406, 27-29.	27.8	37

#	Article	IF	CITATIONS
109	Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature, 1999, 399, 593-597.	27.8	283
110	HIV's evasion of the cellular immune response. Immunological Reviews, 1999, 168, 65-74.	6.0	121
111	HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature, 1998, 391, 397-401.	27.8	950
112	Activation of Apoptosis Signal-Regulating Kinase 1 (ASK1) by the Adapter Protein Daxx., 1998, 281, 1860-1863.		550
113	HIV-1 Directly Kills CD4+ T Cells by a Fas-independent Mechanism. Journal of Experimental Medicine, 1998, 187, 1113-1122.	8.5	184
114	ATM and RPA in meiotic chromosome synapsis and recombination. Nature Genetics, 1997, 17, 457-461.	21.4	138
115	Deletion of the Igκ Light Chain Intronic Enhancer/Matrix Attachment Region Impairs but Does Not Abolish VκJκ Rearrangement. Immunity, 1996, 4, 377-385.	14.3	169
116	A butterfly flutters by. Nature, 1995, 373, 287-288.	27.8	35
117	The V(D)J recombination activating gene, RAG-1. Cell, 1989, 59, 1035-1048.	28.9	1,096
118	Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF- $\hat{\mathbb{P}}$ B transcription factor. Cell, 1988, 53, 211-217.	28.9	1,255
119	Stable expression of immunoglobulin gene V(D)J recombinase activity by gene transfer into 3T3 fibroblasts. Cell, 1988, 53, 107-115.	28.9	167
120	The impact of the discovery of oncogenes on cancer mortality rates will come slowly. Cancer, 1987, 59, 1985-1986.	4.1	7
121	An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature, 1987, 326, 711-713.	27.8	2,258
122	Formation of disulphide-linked µ2ω2 tetramers in pre-B cells by the 18K ω-immunoglobulin light chain. Nature, 1987, 329, 172-174.	27.8	186
123	Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell, 1986, 47, 921-928.	28.9	2,059
124	Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986, 46, 705-716.	28.9	2,651
125	A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature, 1986, 319, 154-158.	27.8	1,249
126	Distinct factors bind to apparently homolgous sequences in the immunoglobulin heavy-chain enhancer. Nature, 1986, 322, 846-848.	27.8	184

#	Article	IF	Citations
127	A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. Nature, 1986, 323, 640-643.	27.8	771
128	Molecular Genetics of Poliovirus. Clinical Infectious Diseases, 1984, 6, S484-S486.	5.8	3
129	Joining of VK to JK gene segments in a retroviral vector introduced into lymphoid cells. Nature, 1984, 308, 425-428.	27.8	115
130	Sexual preference of apparent gene conversion events in MHC genes of mice. Nature, 1984, 309, 639-640.	27.8	28
131	Preferential utilization of the most JH-proximal VH gene segments in pre-B-cell lines. Nature, 1984, 311, 727-733.	27.8	654
132	Immunoglobulin gene transcription is activated by downstream sequence elements. Cell, 1983, 33, 741-748.	28.9	957
133	Continuing kappa-gene rearrangement in a cell line transformed by Abelson murine leukemia virus. Cell, 1982, 30, 807-816.	28.9	301
134	A new genetics of poliovirus. Journal of Cellular Physiology, 1982, 113, 23-36.	4.1	1
135	Immunoglobulin heavy-chain expression and class switching in a murine leukaemia cell line. Nature, 1982, 296, 325-331.	27.8	188
136	Organization and reorganization of immunoglobulin genes in A-MuLV-transformed cells: Rearrangement of heavy but not light chain genes. Cell, 1981, 27, 381-390.	28.9	508
137	Dual expression of λ genes in the MOPC-315 plasmacytoma. Nature, 1981, 290, 65-67.	27.8	85
138	Phosphotyrosine-containing proteins isolated by affinity chromatography with antibodies to a synthetic hapten. Nature, 1981, 294, 654-656.	27.8	221
139	Abelson murine leukaemia virus protein is phosphorylated in vitro to form phosphotyrosine. Nature, 1980, 283, 826-831.	27.8	600
140	Activity of multiple light chain genes in murine myeloma cells producing a single, functional light chain. Cell, 1980, 21, 1-12.	28.9	232
141	A normal cell protein cross-reactive to the major Abelson murine leukaemia virus gene product. Nature, 1979, 281, 396-398.	27.8	163
142	Transformation of Immature Lymphoid Cells by Abelson Murine Leukemia Virus. Immunological Reviews, 1979, 48, 3-22.	6.0	83
143	A detailed model of reverse transcription and tests of crucial aspects. Cell, 1979, 18, 93-100.	28.9	698
144	Immunoglobulin synthesis by lymphoid cells transformed in vitro by Abelson murine leukemia virus. Cell, 1979, 16, 389-396.	28.9	268

#	Article	IF	CITATIONS
145	Virus-Like 30S RNA in Mouse Cells. Journal of Virology, 1979, 29, 1168-1176.	3.4	110
146	5′-Terminal nucleotide sequences of polio virus polyribosomal RNA and virion RNA are identical. Nature, 1977, 268, 270-272.	27.8	91
147	In vitro synthesis of infectious DNA of murine leukaemia virus. Nature, 1977, 269, 122-126.	27.8	100
148	Nomenclature of Eukaryotic DNA Polymerases. FEBS Journal, 1975, 59, 1-2.	0.2	70
149	Temperature-sensitive dna polymerase from rous sarcoma virus mutants. Cancer, 1974, 34, 1395-1397.	4.1	9
150	Is terminal deoxynucleotidyl transferase a somatic mutagen in lymphocytes?. Nature, 1974, 248, 409-411.	27.8	203
151	DNA polymerase activity from two temperature-sensitive mutants of Rous sarcoma virus is thermolabile. Nature, 1974, 251, 27-31.	27.8	117
152	Morphogenesis of Poliovirus II. Demonstration of a New Intermediate, the Proviron. Journal of Virology, 1973, 12, 1122-1130.	3.4	109
153	Defective Interfering Particles of Poliovirus IV. Mechanisms of Enrichment. Journal of Virology, 1973, 12, 1414-1426.	3.4	36
154	In vitro Synthesis of DNA Complementary to Rabbit Reticulocyte 10S RNA. Nature: New Biology, 1972, 235, 163-167.	4.5	210
155	Covalently Linked RNA-DNA Molecule as Initial Product of RNA Tumour Virus DNA Polymerase. Nature: New Biology, 1971, 233, 131-134.	4.5	148
156	Forms of Deoxyribonucleic Acid Produced by Virions of the Ribonucleic Acid Tumor Viruses. Journal of Virology, 1971, 7, 106-111.	3.4	122
157	Absence of Interference During High-Multiplicity Infection by Clonally Purified Vesicular Stomatitis Virus. Journal of Virology, 1971, 7, 409-411.	3.4	114
158	Defective Interfering Particles of Poliovirus I. Isolation and Physical Properties. Journal of Virology, 1971, 7, 478-485.	3.4	166
159	Effect of Pactamycin on Synthesis of Poliovirus Proteins: a Method for Genetic Mapping. Journal of Virology, 1971, 8, 395-401.	3.4	149
160	The Synthesis of Protein by Mammalian RNA Viruses. Novartis Foundation Symposium, 1971, , 101-110.	1.1	5
161	Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase in Virions of RNA Tumour Viruses. Nature, 1970, 226, 1209-1211.	27.8	2,104
162	Defective Viral Particles and Viral Disease Processes. Nature, 1970, 226, 325-327.	27.8	730

#	Article	IF	CITATIONS
163	Interaction of HeLa cell proteins with RNA. Journal of Molecular Biology, 1970, 47, 263-273.	4.2	166
164	Initiation of polyribosome formation in poliovirus-infected HeLa cells. Journal of Molecular Biology, 1970, 47, 275-291.	4.2	117
165	Aspects of the synthesis of poliovirus RNA and the formation of virus particles. Virology, 1966, 29, 179-189.	2.4	199
166	The identification of nucleoside triphosphate ends on RNA formed in the RNA polymerase reaction. Biochemical and Biophysical Research Communications, 1965, 18, 801-811.	2.1	46
167	Preliminary data on a virus-specific enzyme system responsible for the synthesis of viral RNA. Biochemical and Biophysical Research Communications, 1962, 9, 388-392.	2.1	111
168	T cell antigen discovery using signaling and antigen presenting bifunctional receptors (SABRs). Protocol Exchange, 0, , .	0.3	2
169	Trogocytosis-based cell platform for TCR ligand discovery. Protocol Exchange, 0, , .	0.3	1
170	Kinetic Inference Resolves Epigenetic Mechanism of Drug Resistance in Melanoma. SSRN Electronic Journal, 0, , .	0.4	2