David Baltimore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1784227/publications.pdf

Version: 2024-02-01

170 52,471 92
papers citations h-index

178

all docs

citations h-index g-index

178 178 45893
docs citations times ranked citing authors

5873

166

#	Article	IF	CITATIONS
1	NF-ÂB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12481-12486.	3.3	4,022
2	Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986, 46, 705-716.	13.5	2,651
3	An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature, 1987, 326, 711-713.	13.7	2,258
4	Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase in Virions of RNA Tumour Viruses. Nature, 1970, 226, 1209-1211.	13.7	2,104
5	Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell, 1986, 47, 921-928.	13.5	2,059
6	MicroRNA-155 is induced during the macrophage inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1604-1609.	3.3	1,679
7	The Ikappa B-NF-kappa B Signaling Module: Temporal Control and Selective Gene Activation. Science, 2002, 298, 1241-1245.	6.0	1,672
8	30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell, 2017, 168, 37-57.	13.5	1,437
9	Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology, 2010, 10, 111-122.	10.6	1,391
10	Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF- $\hat{l}^{\circ}B$ transcription factor. Cell, 1988, 53, 211-217.	13.5	1,255
11	A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature, 1986, 319, 154-158.	13.7	1,249
12	The V(D)J recombination activating gene, RAG-1. Cell, 1989, 59, 1035-1048.	13.5	1,096
13	MicroRNAs: new regulators of immune cell development and function. Nature Immunology, 2008, 9, 839-845.	7.0	1,043
14	Function of miR-146a in Controlling Treg Cell-Mediated Regulation of Th1 Responses. Cell, 2010, 142, 914-929.	13.5	974
15	Immunoglobulin gene transcription is activated by downstream sequence elements. Cell, 1983, 33, 741-748.	13.5	957
16	HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature, 1998, 391, 397-401.	13.7	950
17	microRNA Regulation of Inflammatory Responses. Annual Review of Immunology, 2012, 30, 295-312.	9.5	814
18	MicroRNA-155 Promotes Autoimmune Inflammation by Enhancing Inflammatory T Cell Development. Immunity, 2010, 33, 607-619.	6.6	800

#	Article	IF	CITATIONS
19	$\langle i \rangle$ miR-146a $\langle j i \rangle$ is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. Journal of Experimental Medicine, 2011, 208, 1189-1201.	4.2	780
20	A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. Nature, 1986, 323, 640-643.	13.7	771
21	Inositol phosphatase SHIP1 is a primary target of miR-155. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7113-7118.	3.3	732
22	Defective Viral Particles and Viral Disease Processes. Nature, 1970, 226, 325-327.	13.7	730
23	A detailed model of reverse transcription and tests of crucial aspects. Cell, 1979, 18, 93-100.	13.5	698
24	Preferential utilization of the most JH-proximal VH gene segments in pre-B-cell lines. Nature, 1984, 311, 727-733.	13.7	654
25	Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. Journal of Experimental Medicine, 2008, 205, 585-594.	4.2	644
26	MicroRNAs as regulatory elements in immune system logic. Nature Reviews Immunology, 2016, 16, 279-294.	10.6	616
27	Permissive Secondary Mutations Enable the Evolution of Influenza Oseltamivir Resistance. Science, 2010, 328, 1272-1275.	6.0	606
28	Abelson murine leukaemia virus protein is phosphorylated in vitro to form phosphotyrosine. Nature, 1980, 283, 826-831.	13.7	600
29	Achieving Stability of Lipopolysaccharide-Induced NF-ÂB Activation. Science, 2005, 309, 1854-1857.	6.0	557
30	Activation of Apoptosis Signal-Regulating Kinase 1 (ASK1) by the Adapter Protein Daxx. , 1998, 281, 1860-1863.		550
31	Organization and reorganization of immunoglobulin genes in A-MuLV-transformed cells: Rearrangement of heavy but not light chain genes. Cell, 1981, 27, 381-390.	13.5	508
32	Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature, 2011, 477, 95-98.	13.7	502
33	Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature, 2012, 481, 81-84.	13.7	488
34	The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nature Immunology, 2009, 10, 281-288.	7.0	443
35	One Nucleotide in a κB Site Can Determine Cofactor Specificity for NF-κB Dimers. Cell, 2004, 118, 453-464.	13.5	365
36	Heme-Mediated SPI-C Induction Promotes Monocyte Differentiation into Iron-Recycling Macrophages. Cell, 2014, 156, 1223-1234.	13.5	359

#	Article	IF	Citations
37	NF-κB dysregulation in microRNA-146a–deficient mice drives the development of myeloid malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9184-9189.	3.3	342
38	MicroRNAs and Immunity: Tiny Players in a Big Field. Immunity, 2007, 26, 133-137.	6.6	327
39	Continuing kappa-gene rearrangement in a cell line transformed by Abelson murine leukemia virus. Cell, 1982, 30, 807-816.	13.5	301
40	MicroRNA-125b Potentiates Macrophage Activation. Journal of Immunology, 2011, 187, 5062-5068.	0.4	286
41	Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature, 1999, 399, 593-597.	13.7	283
42	Conversion of Danger Signals into Cytokine Signals by Hematopoietic Stem and Progenitor Cells for Regulation of Stress-Induced Hematopoiesis. Cell Stem Cell, 2014, 14, 445-459.	5.2	276
43	Immunoglobulin synthesis by lymphoid cells transformed in vitro by Abelson murine leukemia virus. Cell, 1979, 16, 389-396.	13.5	268
44	<i>miR-146a</i> controls the resolution of T cell responses in mice. Journal of Experimental Medicine, 2012, 209, 1655-1670.	4.2	251
45	MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14235-14240.	3.3	250
46	Activity of multiple light chain genes in murine myeloma cells producing a single, functional light chain. Cell, 1980, 21, 1-12.	13.5	232
47	Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell, 2018, 172, 549-563.e16.	13.5	226
48	Phosphotyrosine-containing proteins isolated by affinity chromatography with antibodies to a synthetic hapten. Nature, 1981, 294, 654-656.	13.7	221
49	MicroRNA-34a Perturbs B Lymphocyte Development by Repressing the Forkhead Box Transcription Factor Foxp1. Immunity, 2010, 33, 48-59.	6.6	219
50	MicroRNAs, new effectors and regulators of NFâ€PB. Immunological Reviews, 2012, 246, 205-220.	2.8	214
51	Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nature Medicine, 2014, 20, 296-300.	15.2	212
52	In vitro Synthesis of DNA Complementary to Rabbit Reticulocyte 10S RNA. Nature: New Biology, 1972, 235, 163-167.	4.5	210
53	Broadly neutralizing antibodies abrogate established hepatitis C virus infection. Science Translational Medicine, 2014, 6, 254ra129.	5.8	204
54	Adoptive Transfer of MART-1 T-Cell Receptor Transgenic Lymphocytes and Dendritic Cell Vaccination in Patients with Metastatic Melanoma. Clinical Cancer Research, 2014, 20, 2457-2465.	3.2	204

#	Article	IF	Citations
55	Is terminal deoxynucleotidyl transferase a somatic mutagen in lymphocytes?. Nature, 1974, 248, 409-411.	13.7	203
56	Aspects of the synthesis of poliovirus RNA and the formation of virus particles. Virology, 1966, 29, 179-189.	1.1	199
57	Regulation of NF-κB activity through lysine monomethylation of p65. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18972-18977.	3.3	198
58	Engineered lentivector targeting of dendritic cells for in vivo immunization. Nature Biotechnology, 2008, 26, 326-334.	9.4	191
59	An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nature Communications, 2017, 8, 851.	5.8	191
60	Immunoglobulin heavy-chain expression and class switching in a murine leukaemia cell line. Nature, 1982, 296, 325-331.	13.7	188
61	Formation of disulphide-linked Âμ2Ϊ‰2 tetramers in pre-B cells by the 18K ω-immunoglobulin light chain. Nature, 1987, 329, 172-174.	13.7	186
62	Distinct factors bind to apparently homolgous sequences in the immunoglobulin heavy-chain enhancer. Nature, 1986, 322, 846-848.	13.7	184
63	HIV-1 Directly Kills CD4+ T Cells by a Fas-independent Mechanism. Journal of Experimental Medicine, 1998, 187, 1113-1122.	4.2	184
64	Deletion of the Igîº Light Chain Intronic Enhancer/Matrix Attachment Region Impairs but Does Not Abolish VκJîº Rearrangement. Immunity, 1996, 4, 377-385.	6.6	169
65	Alternative mRNA splicing in cancer immunotherapy. Nature Reviews Immunology, 2019, 19, 675-687.	10.6	169
66	Stable expression of immunoglobulin gene $V(D)J$ recombinase activity by gene transfer into 3T3 fibroblasts. Cell, 1988, 53, 107-115.	13.5	167
67	Interaction of HeLa cell proteins with RNA. Journal of Molecular Biology, 1970, 47, 263-273.	2.0	166
68	Defective Interfering Particles of Poliovirus I. Isolation and Physical Properties. Journal of Virology, 1971, 7, 478-485.	1.5	166
69	Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nature Methods, 2017, 14, 521-530.	9.0	165
70	A normal cell protein cross-reactive to the major Abelson murine leukaemia virus gene product. Nature, 1979, 281, 396-398.	13.7	163
71	Epistasis between MicroRNAs 155 and 146a during T Cell-Mediated Antitumor Immunity. Cell Reports, 2012, 2, 1697-1709.	2.9	154
72	Activation of the Transcriptional Function of the NF-κB Protein c-Rel by <i>O</i> -GlcNAc Glycosylation. Science Signaling, 2013, 6, ra75.	1.6	152

#	Article	IF	Citations
73	Effect of Pactamycin on Synthesis of Poliovirus Proteins: a Method for Genetic Mapping. Journal of Virology, 1971, 8, 395-401.	1.5	149
74	Covalently Linked RNA-DNA Molecule as Initial Product of RNA Tumour Virus DNA Polymerase. Nature: New Biology, 1971, 233, 131-134.	4.5	148
75	NF-κB is 25. Nature Immunology, 2011, 12, 683-685.	7.0	143
76	Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4233-4238.	3.3	143
77	ATM and RPA in meiotic chromosome synapsis and recombination. Nature Genetics, 1997, 17, 457-461.	9.4	138
78	Functional TCR T cell screening using single-cell droplet microfluidics. Lab on A Chip, 2018, 18, 3733-3749.	3.1	132
79	Heterogeneous Responses of Hematopoietic Stem Cells to Inflammatory Stimuli Are Altered with Age. Cell Reports, 2018, 25, 2992-3005.e5.	2.9	127
80	Essential roles of the κ light chain intronic enhancer and 3′ enhancer in κ rearrangement and demethylation. Nature Immunology, 2002, 3, 463-468.	7.0	122
81	Forms of Deoxyribonucleic Acid Produced by Virions of the Ribonucleic Acid Tumor Viruses. Journal of Virology, 1971, 7, 106-111.	1.5	122
82	HIV's evasion of the cellular immune response. Immunological Reviews, 1999, 168, 65-74.	2.8	121
83	Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nature Biotechnology, 2013, 31, 647-652.	9.4	121
84	MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. ELife, 2013, 2, e00537.	2.8	120
85	Initiation of polyribosome formation in poliovirus-infected HeLa cells. Journal of Molecular Biology, 1970, 47, 275-291.	2.0	117
86	DNA polymerase activity from two temperature-sensitive mutants of Rous sarcoma virus is thermolabile. Nature, 1974, 251, 27-31.	13.7	117
87	T cell antigen discovery via trogocytosis. Nature Methods, 2019, 16, 183-190.	9.0	117
88	Joining of VK to JK gene segments in a retroviral vector introduced into lymphoid cells. Nature, 1984, 308, 425-428.	13.7	115
89	Absence of Interference During High-Multiplicity Infection by Clonally Purified Vesicular Stomatitis Virus. Journal of Virology, 1971, 7, 409-411.	1.5	114
90	Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4518-4523.	3.3	113

#	Article	IF	Citations
91	Preliminary data on a virus-specific enzyme system responsible for the synthesis of viral RNA. Biochemical and Biophysical Research Communications, 1962, 9, 388-392.	1.0	111
92	Virus-Like 30S RNA in Mouse Cells. Journal of Virology, 1979, 29, 1168-1176.	1.5	110
93	Morphogenesis of Poliovirus II. Demonstration of a New Intermediate, the Proviron. Journal of Virology, 1973, 12, 1122-1130.	1.5	109
94	Regulation of Monocyte Functional Heterogeneity by miR-146a and Relb. Cell Reports, 2012, 1, 317-324.	2.9	105
95	T cell antigen discovery via signaling and antigen-presenting bifunctional receptors. Nature Methods, 2019, 16, 191-198.	9.0	103
96	In vitro synthesis of infectious DNA of murine leukaemia virus. Nature, 1977, 269, 122-126.	13.7	100
97	Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody Gene Transfer Protects Nonhuman Primates from Mucosal Simian-Human Immunodeficiency Virus Infection. Journal of Virology, 2015, 89, 8334-8345.	1.5	100
98	Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1408-16.	3.3	97
99	$5\hat{a}\in^2$ -Terminal nucleotide sequences of polio virus polyribosomal RNA and virion RNA are identical. Nature, 1977, 268, 270-272.	13.7	91
100	Myeloid cell–targeted miR-146a mimic inhibits NF-κB–driven inflammation and leukemia progression in vivo. Blood, 2020, 135, 167-180.	0.6	88
101	Let-7 Suppresses B Cell Activation through Restricting the Availability of Necessary Nutrients. Cell Metabolism, 2018, 27, 393-403.e4.	7.2	87
102	Dual expression of λ genes in the MOPC-315 plasmacytoma. Nature, 1981, 290, 65-67.	13.7	85
103	The MicroRNA-132 and MicroRNA-212 Cluster Regulates Hematopoietic Stem Cell Maintenance and Survival with Age by Buffering FOXO3 Expression. Immunity, 2015, 42, 1021-1032.	6.6	84
104	Transformation of Immature Lymphoid Cells by Abelson Murine Leukemia Virus. Immunological Reviews, 1979, 48, 3-22.	2.8	83
105	RNA splicing regulates the temporal order of TNF-induced gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11934-11939.	3.3	77
106	Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. Journal of Biological Chemistry, 2017, 292, 732-747.	1.6	74
107	Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line. Nature Communications, 2020, 11, 2345.	5. 8	74
108	The microRNA-212/132 cluster regulates B cell development by targeting Sox4. Journal of Experimental Medicine, 2015, 212, 1679-1692.	4.2	72

#	Article	IF	CITATIONS
109	Sam68 Is Required for Both NF-κB Activation and Apoptosis Signaling by the TNF Receptor. Molecular Cell, 2011, 43, 167-179.	4.5	71
110	Nomenclature of Eukaryotic DNA Polymerases. FEBS Journal, 1975, 59, 1-2.	0.2	70
111	Sensitive Detection and Analysis of Neoantigen-Specific T Cell Populations from Tumors and Blood. Cell Reports, 2019, 28, 2728-2738.e7.	2.9	65
112	Lentiviral Vector Delivery of Human Interleukin-7 (hIL-7) to Human Immune System (HIS) Mice Expands T Lymphocyte Populations. PLoS ONE, 2010, 5, e12009.	1.1	61
113	RNA-binding protein Lin28 in cancer and immunity. Cancer Letters, 2016, 375, 108-113.	3.2	61
114	The Cellular Immunotherapy Revolution: Arming the Immune System for Precision Therapy. Trends in Immunology, 2019, 40, 292-309.	2.9	61
115	Vectored antibody gene delivery protects against <i>Plasmodium falciparum</i> sporozoite challenge in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12528-12532.	3.3	60
116	Generation of functional antigen-specific T cells in defined genetic backgrounds by retrovirus-mediated expression of TCR cDNAs in hematopoietic precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6204-6209.	3.3	57
117	MicroRNAs and Hematopoietic Cell Development. Current Topics in Developmental Biology, 2012, 99, 145-174.	1.0	55
118	The <scp>Y</scp> in and <scp>Y</scp> ang of micro <scp>RNA</scp> s: leukemia and immunity. Immunological Reviews, 2013, 253, 129-145.	2.8	53
119	Dual mechanisms by which miR-125b represses IRF4 to induce myeloid and B-cell leukemias. Blood, 2014, 124, 1502-1512.	0.6	51
120	Antibody gene transfer with adenoâ€associated viral vectors as a method for <scp>HIV</scp> prevention. Immunological Reviews, 2017, 275, 324-333.	2.8	51
121	Isolation and characterization of NY-ESO-1–specific T cell receptors restricted on various MHC molecules. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10702-E10711.	3.3	50
122	Allelic Exclusion and Peripheral Reconstitution by TCR Transgenic T Cells Arising From Transduced Human Hematopoietic Stem/Progenitor Cells. Molecular Therapy, 2013, 21, 1044-1054.	3.7	49
123	Discovering NF-ÂB. Cold Spring Harbor Perspectives in Biology, 2009, 1, a000026-a000026.	2.3	48
124	HIV-1 Gag-specific immunity induced by a lentivector-based vaccine directed to dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20382-20387.	3.3	48
125	Domain-swapped T cell receptors improve the safety of TCR gene therapy. ELife, 2016, 5, .	2.8	48
126	The identification of nucleoside triphosphate ends on RNA formed in the RNA polymerase reaction. Biochemical and Biophysical Research Communications, 1965, 18, 801-811.	1.0	46

#	Article	IF	CITATIONS
127	A Computational-Experimental Approach Identifies Mutations That Enhance Surface Expression of an Oseltamivir-Resistant Influenza Neuraminidase. PLoS ONE, 2011, 6, e22201.	1.1	46
128	CD4+CD25â^' T Cells Transduced to Express MHC Class I-Restricted Epitope-Specific TCR Synthesize Th1 Cytokines and Exhibit MHC Class I-Restricted Cytolytic Effector Function in a Human Melanoma Model. Journal of Immunology, 2008, 181, 1063-1070.	0.4	43
129	Epigenetic silencing of miR-125b is required for normal B-cell development. Blood, 2018, 131, 1920-1930.	0.6	40
130	BUD13 Promotes a Type I Interferon Response by Countering Intron Retention in Irf7. Molecular Cell, 2019, 73, 803-814.e6.	4.5	39
131	MicroRNA-146a Provides Feedback Regulation of Lyme Arthritis but Not Carditis during Infection with Borrelia burgdorferi. PLoS Pathogens, 2014, 10, e1004212.	2.1	38
132	A cellular rescue team. Nature, 2000, 406, 27-29.	13.7	37
133	EHMT1 Protein Binds to Nuclear Factor-κB p50 and Represses Gene Expression. Journal of Biological Chemistry, 2012, 287, 31207-31217.	1.6	37
134	Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12416-12421.	3.3	37
135	MATE-Seq: microfluidic antigen-TCR engagement sequencing. Lab on A Chip, 2019, 19, 3011-3021.	3.1	36
136	Defective Interfering Particles of Poliovirus IV. Mechanisms of Enrichment. Journal of Virology, 1973, 12, 1414-1426.	1.5	36
137	A butterfly flutters by. Nature, 1995, 373, 287-288.	13.7	35
138	As Good As It Gets? The Problem of HIV Persistence despite Antiretroviral Drugs. Cell Host and Microbe, 2012, 12, 132-138.	5.1	35
139	Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nature Medicine, 2022, 28, 1022-1030.	15.2	34
140	Sexual preference of apparent gene conversion events in MHC genes of mice. Nature, 1984, 309, 639-640.	13.7	28
141	Preparation of peptide–MHC and T-cell receptor dextramers by biotinylated dextran doping. BioTechniques, 2017, 62, 123-130.	0.8	22
142	Single-molecule analysis of RAG-mediated $V(D)J$ DNA cleavage. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1715-23.	3.3	20
143	Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986. 46: 705-716. Journal of Immunology, 2006, 177, 7485-96.	0.4	20
144	Deficiency of Nuclear Factor-κB c-Rel Accelerates the Development of Autoimmune Diabetes in NOD Mice. Diabetes, 2016, 65, 2367-2379.	0.3	19

#	Article	IF	CITATIONS
145	HIV-1 Conserved Mosaics Delivered by Regimens with Integration-Deficient DC-Targeting Lentiviral Vector Induce Robust T Cells. Molecular Therapy, 2017, 25, 494-503.	3.7	19
146	T cell receptors for the HIV KK10 epitope from patients with differential immunologic control are functionally indistinguishable. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1877-1882.	3.3	15
147	Alternative splicing coupled with transcript degradation modulates OAS1g antiviral activity. Rna, 2020, 26, 126-136.	1.6	15
148	Use of Mutated Self-Cleaving 2A Peptides as a Molecular Rheostat to Direct Simultaneous Formation of Membrane and Secreted Anti-HIV Immunoglobulins. PLoS ONE, 2012, 7, e50438.	1.1	13
149	Dendritic cell–targeted lentiviral vector immunization uses pseudotransduction and DNA-mediated STING and cGAS activation. Science Immunology, 2017, 2, .	5.6	13
150	Photonâ€Induced Nearâ€Field Electron Microscopy of Eukaryotic Cells. Angewandte Chemie - International Edition, 2017, 56, 11498-11501.	7.2	13
151	A kinetic investigation of interacting, stimulated T cells identifies conditions for rapid functional enhancement, minimal phenotype differentiation, and improved adoptive cell transfer tumor eradication. PLoS ONE, 2018, 13, e0191634.	1.1	12
152	Dendritic cells efficiently transmit HIV to T Cells in a tenofovir and raltegravir insensitive manner. PLoS ONE, 2018, 13, e0189945.	1.1	10
153	Temperature-sensitive dna polymerase from rous sarcoma virus mutants. Cancer, 1974, 34, 1395-1397.	2.0	9
154	IND-Enabling Studies for a Clinical Trial to Genetically Program a Persistent Cancer-Targeted Immune System. Clinical Cancer Research, 2019, 25, 1000-1011.	3.2	9
155	Sequence-dependent dynamics of synthetic and endogenous RSSs in V(D)J recombination. Nucleic Acids Research, 2020, 48, 6726-6739.	6.5	8
156	The impact of the discovery of oncogenes on cancer mortality rates will come slowly. Cancer, 1987, 59, 1985-1986.	2.0	7
157	The Synthesis of Protein by Mammalian RNA Viruses. Novartis Foundation Symposium, 1971, , 101-110.	1.2	5
158	Renato Dulbecco (1914–2012). Science, 2012, 335, 1587-1587.	6.0	4
159	Sixty Years of Discovery. Annual Review of Immunology, 2019, 37, 1-17.	9.5	4
160	Molecular Genetics of Poliovirus. Clinical Infectious Diseases, 1984, 6, S484-S486.	2.9	3
161	The boldness of philanthropists. Science, 2016, 353, 1473-1473.	6.0	3
162	Characterization of Postinfusion Phenotypic Differences in Fresh Versus Cryopreserved TCR Engineered Adoptive Cell Therapy Products. Journal of Immunotherapy, 2018, 41, 248-259.	1.2	3

#	Article	IF	CITATIONS
163	Science for the Globe. Science, 2008, 319, 697-697.	6.0	2
164	T cell antigen discovery using signaling and antigen presenting bifunctional receptors (SABRs). Protocol Exchange, 0, , .	0.3	2
165	Kinetic Inference Resolves Epigenetic Mechanism of Drug Resistance in Melanoma. SSRN Electronic Journal, 0, , .	0.4	2
166	A new genetics of poliovirus. Journal of Cellular Physiology, 1982, 113, 23-36.	2.0	1
167	The Preoccupations of Twenty-First-Century Biology. , 2008, , 1-5.		1
168	Trogocytosis-based cell platform for TCR ligand discovery. Protocol Exchange, 0, , .	0.3	1
169	The microRNA-212/132 cluster regulates B cell development by targeting Sox4. Journal of Cell Biology, 2015, 210, 2107OIA191.	2.3	1
170	Photonâ€Induced Nearâ€Field Electron Microscopy of Eukaryotic Cells. Angewandte Chemie, 2017, 129, 11656-11659.	1.6	O