List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1784176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy balance and acclimation to light and cold. Trends in Plant Science, 1998, 3, 224-230.	8.8	876
2	PHOTOSYNTHESIS OFOVERWINTERINGEVERGREENPLANTS. Annual Review of Plant Biology, 2003, 54, 329-355.	18.7	492
3	Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynthesis Research, 1993, 37, 19-39.	2.9	471
4	Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiologia Plantarum, 2006, 126, 28-44.	5.2	467
5	Adaptation and Acclimation of Photosynthetic Microorganisms to Permanently Cold Environments. Microbiology and Molecular Biology Reviews, 2006, 70, 222-252.	6.6	442
6	Acclimation of Arabidopsis Leaves Developing at Low Temperatures. Increasing Cytoplasmic Volume Accompanies Increased Activities of Enzymes in the Calvin Cycle and in the Sucrose-Biosynthesis Pathway1. Plant Physiology, 1999, 119, 1387-1398.	4.8	292
7	The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp Plant, Cell and Environment, 2006, 29, 1259-1272.	5.7	221
8	The Effect of Overexpression of Two Brassica CBF/DREB1-like Transcription Factors on Photosynthetic Capacity and Freezing Tolerance in Brassica napus. Plant and Cell Physiology, 2005, 46, 1525-1539.	3.1	186
9	Cold-Regulated Cereal Chloroplast Late Embryogenesis Abundant-Like Proteins. Molecular Characterization and Functional Analyses. Plant Physiology, 2002, 129, 1368-1381.	4.8	175
10	The effects of cadmium on photosynthesis of Phaseolus vulgaris - a fluorescence analysis. Physiologia Plantarum, 1993, 88, 626-630.	5.2	169
11	Flexibility in photosynthetic electron transport: The physiological role of plastoquinol terminal oxidase (PTOX). Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 954-967.	1.0	138
12	Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation. International Journal of Molecular Sciences, 2013, 14, 12729-12763.	4.1	132
13	Photosynthetic Redox Imbalance Governs Leaf Sectoring in the <i>Arabidopsis thaliana</i> Variegation Mutants <i>immutans</i> , <i>spotty</i> , <i>var1</i> , and <i>var2</i> Â. Plant Cell, 2009, 21, 3473-3492.	6.6	130
14	Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynthesis Research, 2015, 126, 221-235.	2.9	113
15	Effect of Growth Temperature and Temperature Shifts on Spinach Leaf Morphology and Photosynthesis. Plant Physiology, 1990, 94, 1830-1836.	4.8	112
16	Effect of Cold Hardening on Sensitivity of Winter and Spring Wheat Leaves to Short-Term Photoinhibition and Recovery of Photosynthesis. Plant Physiology, 1992, 100, 1283-1290.	4.8	112
17	IMMUTANS Does Not Act as a Stress-Induced Safety Valve in the Protection of the Photosynthetic Apparatus of Arabidopsis during Steady-State Photosynthesis. Plant Physiology, 2006, 142, 574-585.	4.8	112
18	Chloroplast redox imbalance governs phenotypic plasticity: the "grand design of photosynthesis― revisited. Frontiers in Plant Science, 2012, 3, 255.	3.6	110

#	Article	IF	CITATIONS
19	Low Temperature Development Induces a Specific Decrease in trans-Δ3-Hexadecenoic Acid Content which Influences LHCII Organization. Plant Physiology, 1987, 84, 12-18.	4.8	108
20	Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana. Photosynthesis Research, 2012, 113, 191-206.	2.9	106
21	Feedback-limited photosynthesis and regulation of sucrose-starch accumulation during cold acclimation and low-temperature stress in a spring and winter wheat. Planta, 1997, 201, 18-26.	3.2	100
22	Energy balance, organellar redox status, and acclimation to environmental stress. Canadian Journal of Botany, 2006, 84, 1355-1370.	1.1	95
23	Low Growth Temperature Effects a Differential Inhibition of Photosynthesis in Spring and Winter Wheat. Plant Physiology, 1991, 96, 491-497.	4.8	85
24	Greening under High Light or Cold Temperature Affects the Level of Xanthophyll-Cycle Pigments, Early Light-Inducible Proteins, and Light-Harvesting Polypeptides in Wild-Type Barley and theChlorina f2Mutant1. Plant Physiology, 1999, 120, 193-204.	4.8	85
25	Photosystem II reaction centre quenching: mechanisms and physiological role. Photosynthesis Research, 2008, 98, 565-574.	2.9	85
26	Sucrose metabolism in spring and winter wheat in response to high irradiance, cold stress and cold acclimation. Physiologia Plantarum, 2000, 108, 270-278.	5.2	84
27	The role of growth rate, redox-state of the plastoquinone pool and the trans-thylakoid ΔpH in photoacclimation of Chlorella vulgaris to growth irradiance and temperature. Planta, 2000, 212, 93-102.	3.2	81
28	IDENTIFICATION OF A PSYCHROPHILIC GREEN ALGA FROM LAKE BONNEY ANTARCTICA:CHLAMYDOMONAS RAUDENSISETTL. (UWO 241)CHLOROPHYCEAE. Journal of Phycology, 2004, 40, 1138-1148.	2.3	81
29	Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1561, 251-265.	2.6	80
30	Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers. New Phytologist, 2021, 229, 675-691.	7.3	80
31	Iron Deficiency in Cyanobacteria Causes Monomerization of Photosystem I Trimers and Reduces the Capacity for State Transitions and the Effective Absorption Cross Section of Photosystem I in Vivo. Plant Physiology, 2006, 141, 1436-1445.	4.8	70
32	Biochemical constrains limit the potential of the photochemical reflectance index as a predictor of effective quantum efficiency of photosynthesis during the winter spring transition in Jack pine seedlings. Functional Plant Biology, 2009, 36, 1016.	2.1	65
33	Changes in the Redox Potential of Primary and Secondary Electron-Accepting Quinones in Photosystem II Confer Increased Resistance to Photoinhibition in Low-Temperature-Acclimated Arabidopsis. Plant Physiology, 2003, 132, 2144-2151.	4.8	64
34	A Transient Exchange of the Photosystem II Reaction Center Protein D1:1 with D1:2 during Low Temperature Stress ofSynechococcus sp. PCC 7942 in the Light Lowers the Redox Potential of QB. Journal of Biological Chemistry, 2002, 277, 32739-32745.	3.4	63
35	Increased Air Temperature during Simulated Autumn Conditions Does Not Increase Photosynthetic Carbon Gain But Affects the Dissipation of Excess Energy in Seedlings of the Evergreen Conifer Jack Pine. Plant Physiology, 2007, 143, 1242-1251.	4.8	63
36	Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of <i>Chlorella kessleri</i> microalgae. Bioelectromagnetics, 2012, 33, 298-308.	1.6	62

#	Article	IF	CITATIONS
37	Title is missing!. Photosynthesis Research, 1998, 56, 303-314.	2.9	61
38	Growth and development at cold-hardening temperatures. Chloroplast ultrastructure, pigment content, and composition. Canadian Journal of Botany, 1984, 62, 53-60.	1.1	60
39	Low Temperature-Induced Decrease in <i>trans</i> -î" ³ -Hexadecenoic Acid Content Is Correlated with Freezing Tolerance in Cereals. Plant Physiology, 1989, 89, 144-150.	4.8	60
40	The Antarctic psychrophile, Chlamydomonas subcaudata, is deficient in stateÂl–stateÂll transitions. Planta, 2002, 214, 435-445.	3.2	60
41	Digalactosyl-Diacylglycerol Deficiency Impairs the Capacity for Photosynthetic Intersystem Electron Transport and State Transitions in Arabidopsis thaliana Due to Photosystem I Acceptor-Side Limitations. Plant and Cell Physiology, 2006, 47, 1146-1157.	3.1	60
42	Survey of gene expression in winter rye during changes in growth temperature, irradiance or excitation pressure. Plant Molecular Biology, 2001, 45, 691-703.	3.9	59
43	Low-temperature modulation of the redox properties of the acceptor side of photosystem II: photoprotection through reaction centre quenching of excess energy. Physiologia Plantarum, 2003, 119, 376-383.	5.2	59
44	Reaction centre quenching of excess light energy and photoprotection of photosystem II. Journal of Plant Biology, 2008, 51, 85-96.	2.1	57
45	Shedding some light on cold acclimation, cold adaptation, and phenotypic plasticity. Botany, 2013, 91, 127-136.	1.0	56
46	Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth) Bartl Journal of Experimental Botany, 2007, 58, 3581-3590.	4.8	55
47	Regulation of Energy Partitioning and Alternative Electron Transport Pathways During Cold Acclimation of Lodgepole Pine is Oxygen Dependent. Plant and Cell Physiology, 2010, 51, 1555-1570.	3.1	55
48	The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and <i>Brassica napus</i> . Physiologia Plantarum, 2012, 144, 169-188.	5.2	55
49	Excitation energy partitioning and quenching during cold acclimation in Scots pine. Tree Physiology, 2006, 26, 325-336.	3.1	54
50	Photosynthetic acclimation, vernalization, crop productivity and †the grand design of photosynthesis'. Journal of Plant Physiology, 2016, 203, 29-43.	3.5	54
51	Identity and physiology of a new psychrophilic eukaryotic green alga, Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica. Extremophiles, 2008, 12, 701-711.	2.3	50
52	Daily photosynthetic and C-export patterns in winter wheat leaves during cold stress and acclimation. Physiologia Plantarum, 2003, 117, 521-531.	5.2	47
53	Psychrophily is associated with differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation in Chlamydomonas raudensis. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 789-800.	1.0	47
54	Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine. Planta, 2006, 223, 1165-1177.	3.2	46

#	Article	IF	CITATIONS
55	Cold Stress Effects on PSI Photochemistry in Zea mays: Differential Increase of FQR-Dependent Cyclic Electron Flow and Functional Implications. Plant and Cell Physiology, 2011, 52, 1042-1054.	3.1	46
56	Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biology, 2017, 40, 1169-1184.	1.2	46
57	Protection of Photosystem II Against UV-A and UV-B Radiation in the Cyanobacterium Plectonema boryanum: The Role of Growth Temperature and Growth Irradiance¶. Photochemistry and Photobiology, 2000, 72, 772.	2.5	45
58	Susceptibility to low-temperature photoinhibition and the acquisition of freezing tolerance in winter and spring wheat: The role of growth temperature and irradiance. Physiologia Plantarum, 2001, 113, 499-506.	5.2	45
59	Stoichiometry of the Photosynthetic Apparatus and Phycobilisome Structure of the Cyanobacterium Plectonema boryanum UTEX 485 Are Regulated by Both Light and Temperature. Plant Physiology, 2002, 130, 1414-1425.	4.8	45
60	The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica. Functional Plant Biology, 2004, 31, 731.	2.1	44
61	Acclimation to temperature and irradiance modulates PSII charge recombination. FEBS Letters, 2006, 580, 2797-2802.	2.8	44
62	Heat stress-induced effects of photosystem I: an overview of structural and functional responses. Photosynthesis Research, 2017, 133, 17-30.	2.9	44
63	THE ANTARCTIC PSYCHROPHILE, CHLAMYDOMONAS RAUDENSIS ETTL (UWO241) (CHLOROPHYCEAE,) TJ ETQq1 2005, 41, 791-800.	1 0.7843 2.3	14 rgBT /Ov 41
64	Cold acclimation and BnCBF17-over-expression enhance photosynthetic performance and energy conversion efficiency during long-term growth of Brassica napus under elevated CO2 conditions. Planta, 2012, 236, 1639-1652.	3.2	40
65	Photostasis in Plants, Green Algae and Cyanobacteria: The Role of Light Harvesting Antenna Complexes. Advances in Photosynthesis and Respiration, 2003, , 401-421.	1.0	40
66	Global transcriptome analyses provide evidence that chloroplast redox state contributes to intracellular as well as long-distance signalling in response to stress and acclimation in Arabidopsis. Photosynthesis Research, 2016, 128, 287-312.	2.9	39
67	Developmental History Affects the Susceptibility of Spinach Leaves to <i>in Vivo</i> Low Temperature Photoinhibition. Plant Physiology, 1992, 99, 1141-1145.	4.8	38
68	Increased Air Temperature during Simulated Autumn Conditions Impairs Photosynthetic Electron Transport between Photosystem II and Photosystem I. Plant Physiology, 2008, 147, 402-414.	4.8	38
69	Preferential damaging effects of limited magnesium bioavailability on photosystem I in Sulla carnosa plants. Planta, 2015, 241, 1189-1206.	3.2	38
70	The Antarctic Psychrophile Chlamydomonas sp. UWO 241 Preferentially Phosphorylates a Photosystem I-Cytochrome b6/f Supercomplex. Plant Physiology, 2015, 169, 717-736.	4.8	37
71	Temperature-induced greening of Chlorella vulgaris . The role of the cellular energy balance and zeaxanthin-dependent nonphotochemical quenching. Planta, 2003, 217, 616-627.	3.2	36
72	Contrasting acclimation abilities of two dominant boreal conifers to elevated CO ₂ and temperature. Plant, Cell and Environment, 2018, 41, 1331-1345.	5.7	36

#	Article	IF	CITATIONS
73	Daphnetin Methylation by a Novel O-Methyltransferase Is Associated with Cold Acclimation and Photosystem II Excitation Pressure in Rye. Journal of Biological Chemistry, 2003, 278, 6854-6861.	3.4	35
74	Enhancement of photosynthetic performance, water use efficiency and grain yield during long-term growth under elevated CO2 in wheat and rye is growth temperature and cultivar dependent. Environmental and Experimental Botany, 2014, 106, 207-220.	4.2	35
75	Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (<i>Picea abies</i>). Tree Physiology, 2015, 35, 1303-1313.	3.1	35
76	The Determination and Quantification of Photosynthetic Pigments by Reverse Phase High-Performance Liquid Chromatography, Thin-Layer Chromatography, and Spectrophotometry. , 2004, 274, 137-148.		33
77	Seasonal changes in chlorophyll fluorescence quenching and the induction and capacity of the photoprotective xanthophyll cycle in Lobaria pulmonaria. Canadian Journal of Botany, 2002, 80, 255-261.	1.1	30
78	Two Hymenophyllaceae species from contrasting natural environments exhibit a homoiochlorophyllous strategy in response to desiccation stress. Journal of Plant Physiology, 2016, 191, 82-94.	3.5	29
79	Effects of low temperature stress on excitation energy partitioning and photoprotection in Zea mays. Functional Plant Biology, 2009, 36, 37.	2.1	28
80	Potential for increased photosynthetic performance and crop productivity in response to climate change: role of CBFs and gibberellic acid. Frontiers in Chemistry, 2014, 2, 18.	3.6	28
81	<i>Chlamydomonas</i> sp. UWO 241 Exhibits High Cyclic Electron Flow and Rewired Metabolism under High Salinity. Plant Physiology, 2020, 183, 588-601.	4.8	28
82	Permeability of the Suberized Mestome Sheath in Winter Rye. Plant Physiology, 1985, 77, 157-161.	4.8	26
83	Temperature and Light Modulate the trans-Δ3-Hexadecenoic Acid Content of Phosphatidylglycerol: Light-harvesting Complex II Organization and Non-photochemical Quenching. Plant and Cell Physiology, 2005, 46, 1272-1282.	3.1	26
84	Cold acclimation of the Arabidopsis dgd1 mutant results in recovery from photosystem I-limited photosynthesis. FEBS Letters, 2006, 580, 4959-4968.	2.8	26
85	Long-Term Growth Under Elevated CO2 Suppresses Biotic Stress Genes in Non-Acclimated, But Not Cold-Acclimated Winter Wheat. Plant and Cell Physiology, 2013, 54, 1751-1768.	3.1	26
86	Draft genome sequence of the Antarctic green alga Chlamydomonas sp. UWO241. IScience, 2021, 24, 102084.	4.1	26
87	Electric properties of thylakoid membranes from pea mutants with modified carotenoid and chlorophyll-protein complex composition. Photosynthesis Research, 2000, 65, 165-174.	2.9	25
88	The temperature-dependent accumulation of Mg-protoporphyrin IX and reactive oxygen species in Chlorella vulgaris. Physiologia Plantarum, 2003, 119, 126-136.	5.2	25
89	Resolving the phylogenetic relationship between <i>Chlamydomonas</i> sp. <scp>UWO</scp> 241 and <i>Chlamydomonas raudensis</i> sag 49.72 (Chlorophyceae) with nuclear and plastid <scp>DNA</scp> sequences. Journal of Phycology, 2016, 52, 305-310.	2.3	25
90	Characterization of photosynthetic ferredoxin from the Antarctic alga <i>Chlamydomonas</i> sp. <scp>UWO</scp> 241 reveals novel features of cold adaptation. New Phytologist, 2018, 219, 588-604.	7.3	25

#	Article	IF	CITATIONS
91	The induction of CP43′ by iron-stress in Synechococcus sp. PCC 7942 is associated with carotenoid accumulation and enhanced fatty acid unsaturation. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 807-813.	1.0	22
92	<i>Chlamydomonas raudensis</i> (UWO 241), Chlorophyceae, exhibits the capacity for rapid D1 repair in response to chronic photoinhibition at low temperature ¹ . Journal of Phycology, 2007, 43, 924-936.	2.3	21
93	Starch and sugar accumulation in Sulla carnosa leaves upon Mg2+ starvation. Acta Physiologiae Plantarum, 2014, 36, 2157-2165.	2.1	21
94	Salinity affects the photoacclimation of ChlamydomonasÂraudensis Ettl UWO241. Photosynthesis Research, 2009, 99, 195-203.	2.9	20
95	PLASTICITY OF THE PSYCHROPHILIC GREEN ALGA <i>CHLAMYDOMONAS RAUDENSIS</i> (UWO 241) (CHLOROPHYTA) TO SUPRAOPTIMAL TEMPERATURE STRESS ¹ . Journal of Phycology, 2011, 47, 1098-1109.	2.3	20
96	Cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241: structure, sequence, and complementation in the mesophile, Chlamydomonas reinhardtii. Molecular Genetics and Genomics, 2006, 275, 387-398.	2.1	17
97	Photosynthetic adaptation to polar life: Energy balance, photoprotection and genetic redundancy. Journal of Plant Physiology, 2022, 268, 153557.	3.5	17
98	Protein synthesis and freezing tolerance in plant cells. Critical Reviews in Plant Sciences, 1988, 7, 279-302.	5.7	15
99	Cold acclimation inhibits CO ₂ -dependent stimulation of photosynthesis in spring wheat and spring rye. Botany, 2012, 90, 433-444.	1.0	15
100	Cold-Adapted Protein Kinases and Thylakoid Remodeling Impact Energy Distribution in an Antarctic Psychrophile. Plant Physiology, 2019, 180, 1291-1309.	4.8	15
101	Involvement of plant stress hormones in Burkholderia phytofirmans-induced shoot and root growth promotion. Plant Growth Regulation, 2015, 77, 179-187.	3.4	14
102	Photoinhibition of photosystem I in a pea mutant with altered LHCII organization. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 335-346.	3.8	14
103	The enigmatic loss of lightâ€independent chlorophyll biosynthesis from an Antarctic green alga in a lightâ€limited environment. New Phytologist, 2019, 222, 651-656.	7.3	13
104	Enhancing biomass production and yield by maintaining enhanced capacity for CO2 uptake in response to elevated CO2. Canadian Journal of Plant Science, 2014, 94, 1075-1083.	0.9	12
105	Computer Vision Based Autonomous Robotic System for 3D Plant Growth Measurement. , 2015, , .		12
106	Identification and molecular characterization of the <i>Brachypodium distachyon NRT2</i> family, with a major role of <i>BdNRT2.1</i> . Physiologia Plantarum, 2019, 165, 498-510.	5.2	12
107	Photoprotection of Photosystem II: Reaction Center Quenching Versus Antenna Quenching. Advances in Photosynthesis and Respiration, 2008, , 155-173.	1.0	11
108	Lowâ€ŧemperatureâ€induced alterations in photosynthetic membranes. Critical Reviews in Plant Sciences, 1988, 7, 257-278.	5.7	10

#	Article	IF	CITATIONS
109	Low growth temperature inhibition of photosynthesis in cotyledons of jack pine seedlings (Pinus) Tj ETQq1 1 0.78	34314 rgB ⁻ 1.1	T 10verlock
110	Thermoluminescence. Advances in Photosynthesis and Respiration, 2012, , 445-474.	1.0	10
111	Energy Sensing and Photostasis in Photoautotrophs. Cell and Molecular Response To Stress, 2002, 3, 243-255.	0.4	9
112	A constitutive stress response is a result of low temperature growth in the Antarctic green alga <i>Chlamydomonas</i> sp. <scp>UWO241</scp> . Plant, Cell and Environment, 2022, 45, 156-177.	5.7	8
113	An established Arabidopsis thaliana var. Landsberg erecta cell suspension culture accumulates chlorophyll and exhibits a stay-green phenotype in response to high external sucrose concentrations. Journal of Plant Physiology, 2016, 199, 40-51.	3.5	7
114	The small domain of cytochromeffrom the psychrophileChlamydomonas raudensisUWO 241 modulates the apparent molecular mass and decreases the accumulation of cytochromefin the mesophileChlamydomonas reinhardtii. Biochemistry and Cell Biology, 2007, 85, 616-627.	2.0	5
115	The lack of LHCII proteins modulates excitation energy partitioning and PSII charge recombination in Chlorina F2 mutant of barley. Physiology and Molecular Biology of Plants, 2008, 14, 205-215.	3.1	5
116	REGULATION OF LIGHT HARVESTING IN PHOTOSYSTEM II OF PLANTS, GREEN ALGAE AND CYANOBACTERIA. , 2005, , 97-142.		4
117	Absence of the major light-harvesting antenna proteins alters the redox properties of photosystemÂll reaction centres in the <i>chlorina F2</i> mutant of barley. Biochemistry and Cell Biology, 2009, 87, 557-566.	2.0	4
118	Chlorella vulgaris integrates photoperiod and chloroplast redox signals in response to growth at high light. Planta, 2019, 249, 1189-1205.	3.2	4
119	Exposure of high-light-grown cultures of Chlorella vulgaris to darkness inhibits the relaxation of excitation pressure: uncoupling of the redox state of the photosynthetic electron transport chain and phenotypic plasticity. Botany, 2017, 95, 1125-1140.	1.0	2
120	Photosynthetic Acclimation and Adaptation to Cold Ecosystems. , 2020, , 159-201.		2
121	The decreased PG content of pgp1 inhibits PSI photochemistry and limits reaction center and light-harvesting polypeptide accumulation in response to cold acclimation. Planta, 2022, 255, 36.	3.2	2
122	Daphnetin methylation stabilizes the activity of phosphoribulokinase in wheat during cold acclimation. Biochemistry and Cell Biology, 2012, 90, 657-666.	2.0	1
123	Adaptation to Low Temperature in a Photoautotrophic Antarctic Psychrophile, Chlamydomonas sp. UWO 241. , 2017, , 275-303.		1
124	Presence and absence of light-independent chlorophyll biosynthesis among <i>Chlamydomonas</i> green algae in an ice-covered Antarctic lake. Communicative and Integrative Biology, 2019, 12, 148-150.	1.4	1
125	Seasonal Photoinhibition of Photosystem II in a Cold-Climate Canadian Cactus (Opuntia cespitosa). Haseltonia, 2022, 28, .	0.5	0
126	An Antarctic Alga That Can Survive The Extreme Cold. Frontiers for Young Minds, 0, 10, .	0.8	0