
Bryan S Griffiths

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1783123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews, 2013, 37, 112-129.	8.6	754
2	Soil nematode abundance and functional group composition at a global scale. Nature, 2019, 572, 194-198.	27.8	635
3	Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos, 2000, 90, 279-294.	2.7	529
4	Soil microbial community structure: Effects of substrate loading rates. Soil Biology and Biochemistry, 1998, 31, 145-153.	8.8	428
5	Recently identified microbial guild mediates soil N2O sink capacity. Nature Climate Change, 2014, 4, 801-805.	18.8	364
6	Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Applied Soil Ecology, 2004, 25, 63-84.	4.3	331
7	Impact of Protozoan Grazing on Bacterial Community Structure in Soil Microcosms. Applied and Environmental Microbiology, 2002, 68, 6094-6105.	3.1	300
8	Plant root proliferation in nitrogen–rich patches confers competitive advantage. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 431-435.	2.6	293
9	Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant, Cell and Environment, 1999, 22, 811-820.	5.7	288
10	Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biology and Fertility of Soils, 2013, 49, 661-672.	4.3	257
11	An examination of the biodiversity–ecosystem function relationship in arable soil microbial communities. Soil Biology and Biochemistry, 2001, 33, 1713-1722.	8.8	244
12	Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant and Soil, 2009, 321, 213-233.	3.7	235
13	Microbial-feeding nematodes and protozoa in soil: Their effectson microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere. Plant and Soil, 1994, 164, 25-33.	3.7	214
14	Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Applied Soil Ecology, 2001, 16, 49-61.	4.3	196
15	Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Applied Soil Ecology, 2016, 97, 112-124.	4.3	184
16	The Relationship between Microbial Community Structure and Functional Stability, Tested Experimentally in an Upland Pasture Soil. Microbial Ecology, 2004, 47, 104-113.	2.8	180
17	Food preferences of earthworms for soil fungi. Pedobiologia, 2000, 44, 666-676.	1.2	175
18	Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant and Soil, 1996, 178, 185-192.	3.7	174

#	Article	IF	CITATIONS
19	Competition between roots and soil micro-organisms for nutrients from nitrogen-rich patches of varying complexity. Journal of Ecology, 2000, 88, 150-164.	4.0	169
20	Effect of elevated CO 2 on rhizosphere carbon flow and soil microbial processes. Global Change Biology, 1997, 3, 363-377.	9.5	163
21	Microbial-faunal interactions in the rhizosphere and effects on plant growth. European Journal of Soil Biology, 2000, 36, 135-147.	3.2	163
22	C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess. Ecological Processes, 2012, 1, .	3.9	160
23	Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMS Microbiology Ecology, 2004, 49, 191-205.	2.7	154
24	Substrate heterogeneity and microfauna in soil organic â€~hotspots' as determinants of nitrogen capture and growth of ryegrass. Applied Soil Ecology, 2000, 14, 37-53.	4.3	146
25	Root proliferation, soil fauna and plant nitrogen capture from nutrientâ€rich patches in soil. New Phytologist, 1998, 139, 479-494.	7.3	145
26	Soil protistology rebooted: 30 fundamental questions to start with. Soil Biology and Biochemistry, 2017, 111, 94-103.	8.8	130
27	Migration of bacterial-feeding nematodes, but not protozoa, to decomposing grass residues. Biology and Fertility of Soils, 1993, 15, 201-207.	4.3	119
28	Effects of soil decomposer invertebrates (protozoa and earthworms) on an above-ground phytophagous insect (cereal aphid) mediated through changes in the host plant. Oikos, 2001, 95, 441-450.	2.7	117
29	A comparison of microbial-feeding nematodes and protozoa in the rhizosphere of different plants. Biology and Fertility of Soils, 1990, 9, 83-88.	4.3	116
30	Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Applied Soil Ecology, 2015, 89, 25-34.	4.3	115
31	Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand. New Phytologist, 2000, 145, 477-482.	7.3	114
32	A Comparison of Soil Microbial Community Structure, Protozoa and Nematodes in Field Plots of Conventional and Genetically Modified Maize Expressing the Bacillus thuringiens is CryIAb Toxin. Plant and Soil, 2005, 275, 135-146.	3.7	110
33	The effect of long-term soil management on the physical and biological resilience of a range of arable and grassland soils in England. Geoderma, 2009, 153, 172-185.	5.1	108
34	The role of sulfur- and phosphorus-mobilizing bacteria in biochar-induced growth promotion of <i>Lolium perenne</i> . FEMS Microbiology Ecology, 2014, 90, 78-91.	2.7	107
35	Soil Microbial and Faunal Community Responses to Bt Maize and Insecticide in Two Soils. Journal of Environmental Quality, 2006, 35, 734-741.	2.0	102
36	Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants. Microbiome, 2020, 8, 4.	11.1	102

#	Article	IF	CITATIONS
37	Trophic interactions in changing landscapes: responses of soil food webs. Basic and Applied Ecology, 2004, 5, 495-503.	2.7	100
38	Statistical analysis of the time-course of Biolog substrate utilization. Journal of Microbiological Methods, 1997, 30, 63-69.	1.6	98
39	Effects of earthworms on soil enzyme activity in an organic residue amended rice–wheat rotation agro-ecosystem. Applied Soil Ecology, 2009, 42, 221-226.	4.3	90
40	Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiology and Molecular Biology Reviews, 2021, 85, .	6.6	87
41	Physical resilience of soil to field compaction and the interactions with plant growth and microbial community structure. European Journal of Soil Science, 2007, 58, 1221-1232.	3.9	84
42	Connecting the Green and Brown Worlds. Advances in Ecological Research, 2013, 49, 69-175.	2.7	84
43	Enhanced nitrification in the presence of bacteriophagous protozoa. Soil Biology and Biochemistry, 1989, 21, 1045-1051.	8.8	81
44	Testing genetically engineered potato, producing the lectins GNA and Con A, on non-target soil organisms and processes. Journal of Applied Ecology, 2000, 37, 159-170.	4.0	80
45	Functional resilience of soil microbial communities depends on both soil structure and microbial community composition. Biology and Fertility of Soils, 2008, 44, 745-754.	4.3	80
46	Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecological Indicators, 2016, 69, 213-223.	6.3	80
47	The biological and physical stability and resilience of a selection of Scottish soils to stresses. European Journal of Soil Science, 2007, 58, 811-821.	3.9	79
48	Integrating soil quality changes to arable agricultural systems following organic matter addition, or adoption of a ley-arable rotation. Applied Soil Ecology, 2010, 46, 43-53.	4.3	76
49	Earthworms Coordinate Soil Biota to Improve Multiple Ecosystem Functions. Current Biology, 2019, 29, 3420-3429.e5.	3.9	76
50	A qualitative multi-attribute model for economic and ecological assessment of genetically modified crops. Ecological Modelling, 2008, 215, 247-261.	2.5	74
51	Microbial biomass and mineral N transformations in soil planted with barley, ryegrass, pea or turnip. Plant and Soil, 1990, 127, 157-167.	3.7	72
52	Varietal effects of eight paired lines of transgenic Bt maize and near-isogenic non-Bt maize on soil microbial and nematode community structure. Plant Biotechnology Journal, 2007, 5, 60-68.	8.3	72
53	The effect of nitrate-nitrogen supply on bacteria and bacterial-feeding fauna in the rhizosphere of different grass species. Oecologia, 1992, 91, 253-259.	2.0	71
54	Selection of biological indicators appropriate for European soil monitoring. Applied Soil Ecology, 2016, 97, 12-22.	4.3	71

#	Article	lF	CITATIONS
55	Root-induced nitrogen mineralisation: A nitrogen balance model. Plant and Soil, 1992, 139, 253-263.	3.7	70
56	Soil biodiversity and its implications for ecosystem functioning in a heterogeneous and variable environment. Applied Soil Ecology, 1998, 10, 201-215.	4.3	70
57	Nematodes as indicators of enhanced microbiological activity in a Scottish organic farming system. Soil Use and Management, 1994, 10, 20-24.	4.9	69
58	Vermicompost increases defense against root-knot nematode (Meloidogyne incognita) in tomato plants. Applied Soil Ecology, 2016, 105, 177-186.	4.3	69
59	Enhanced nutrient mineralization and leaching from decomposing sitka spruce litter by enchytraeid worms. Soil Biology and Biochemistry, 1989, 21, 183-188.	8.8	68
60	Community-level responses of metabolically-active soil microorganisms to the quantity and quality of substrate inputs. Soil Biology and Biochemistry, 2004, 36, 841-848.	8.8	68
61	Spatial Distribution and Successional Pattern of Microbial Activity and Micro-Faunal Populations on Decomposing Barley Roots. Journal of Applied Ecology, 1996, 33, 662.	4.0	66
62	Microbial and microfaunal community structure in cropping systems with genetically modified plants. Pedobiologia, 2007, 51, 195-206.	1.2	64
63	Priorities for research in soil ecology. Pedobiologia, 2017, 63, 1-7.	1.2	64
64	Root-induced nitrogen mineralisation: A theoretical analysis. Plant and Soil, 1989, 117, 185-193.	3.7	63
65	Does microbial habitat or community structure drive the functional stability of microbes to stresses following re-vegetation of a severely degraded soil?. Soil Biology and Biochemistry, 2010, 42, 850-859.	8.8	60
66	Influence of bacterial-feeding nematodes on nitrification and the ammonia-oxidizing bacteria (AOB) community composition. Applied Soil Ecology, 2010, 45, 131-137.	4.3	59
67	Molecular sequencing and morphological analysis of a nematode community. Applied Soil Ecology, 2006, 32, 325-337.	4.3	58
68	A sequential extraction procedure reveals that water management affects soil nematode communities in paddy fields. Applied Soil Ecology, 2008, 40, 250-259.	4.3	58
69	Plant, soil fauna and microbial responses to N-rich organic patches of contrasting temporal availability. Soil Biology and Biochemistry, 1999, 31, 1517-1530.	8.8	57
70	Spatial and physical heterogeneity of N supply from soil does not influence N capture by two grass species. Functional Ecology, 2000, 14, 645-653.	3.6	57
71	Quantitative Estimation of Flagellate Community Structure and Diversity in Soil Samples. Protist, 2001, 152, 301-314.	1.5	57
72	An investigation into sources of soil crack heterogeneity using fractal geometry. European Journal of Soil Science, 1997, 48, 31-37.	3.9	55

#	Article	IF	CITATIONS
73	Biological and physical resilience of soil amended with heavy metal-contaminated sewage sludge. European Journal of Soil Science, 2005, 56, 197-206.	3.9	55
74	Bacterial incorporation of tritiated thymidine and populations of bacteriophagous fauna in the rhizosphere of wheat. Soil Biology and Biochemistry, 1992, 24, 703-709.	8.8	54
75	Decomposition processes under Bt (Bacillus thuringiensis) maize: Results of a multi-site experiment. Soil Biology and Biochemistry, 2006, 38, 195-199.	8.8	54
76	Effect of organic, conventional and mixed cultivation practices on soil microbial community structure and nematode abundance in a cultivated onion crop. Journal of the Science of Food and Agriculture, 2013, 93, 3700-3709.	3.5	54
77	Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize. FEMS Microbiology Ecology, 2005, 54, 123-130.	2.7	53
78	Evaluation of effects of transgenic Bt maize on microarthropods in a European multi-site experiment. Pedobiologia, 2007, 51, 207-218.	1.2	51
79	The Use of Colloidal Silica To Extract Nematodes From Small Samples of Soil or Sediment. Nematologica, 1990, 36, 465-473.	0.2	50
80	DNA extraction from soil nematodes for multi-sample community studies. Applied Soil Ecology, 2008, 38, 20-26.	4.3	50
81	Long-term effect of re-vegetation on the microbial community of a severely eroded soil in sub-tropical China. Plant and Soil, 2010, 328, 447-458.	3.7	50
82	Plant N capture and microfaunal dynamics from decomposing grass and earthworm residues in soil. Soil Biology and Biochemistry, 2000, 32, 1763-1772.	8.8	49
83	New frontiers in belowground ecology for plant protection from root-feeding insects. Applied Soil Ecology, 2016, 108, 96-107.	4.3	49
84	Ryegrass rhizosphere microbial community structure under elevated carbon dioxide concentrations, with observations on wheat rhizosphere. Soil Biology and Biochemistry, 1998, 30, 315-321.	8.8	47
85	Consequences for Protaphorura armata (Collembola: Onychiuridae) following exposure to genetically modified Bacillus thuringiensis (Bt) maize and non-Bt maize. Environmental Pollution, 2006, 142, 212-216.	7.5	47
86	The role of laboratory, glasshouse and field scale experiments in understanding the interactions between genetically modified crops and soil ecosystems: A review of the ECOGEN project. Pedobiologia, 2007, 51, 251-260.	1.2	47
87	Bacterial-feeding nematodes enhance root growth of tomato seedlings. Soil Biology and Biochemistry, 2006, 38, 1615-1622.	8.8	46
88	A global database of soil nematode abundance and functional group composition. Scientific Data, 2020, 7, 103.	5.3	46
89	Implications of the proposed Soil Framework Directive on agricultural systems in Atlantic Europe – a review. Soil Use and Management, 2010, 26, 198-211.	4.9	45
90	Clay mineral type effect on bacterial enteropathogen survival in soil. Science of the Total Environment, 2014, 468-469, 302-305.	8.0	45

#	Article	IF	CITATIONS
91	Effects of animal manure application and crop plants upon size and activity of soil microbial biomass under organically grown spring barley. Biology and Fertility of Soils, 1997, 24, 372-377.	4.3	44
92	%G+C profiling and cross hybridisation of microbial DNA reveals great variation in below-ground community structure in UK upland grasslands. Applied Soil Ecology, 2000, 14, 125-134.	4.3	43
93	Direct extraction of microbial community DNA from humified upland soils. Letters in Applied Microbiology, 1997, 25, 30-33.	2.2	41
94	The role played by microorganisms in the biogenesis of soil cracks: importance of substrate quantity and quality. Soil Biology and Biochemistry, 2001, 33, 1851-1858.	8.8	41
95	Seasonal nitrous oxide emissions from field soils under reduced tillage, compost application or or or organic farming. Agriculture, Ecosystems and Environment, 2014, 189, 171-180.	5.3	41
96	Microbial and microfaunal communities in phosphorus limited, grazed grassland change composition but maintain homeostatic nutrient stoichiometry. Soil Biology and Biochemistry, 2014, 75, 94-101.	8.8	41
97	Biochar exerts negative effects on soil fauna across multiple trophic levels in a cultivated acidic soil. Biology and Fertility of Soils, 2020, 56, 597-606.	4.3	41
98	Broad-scale approaches to the determination of soil microbial community structure: Application of the community DNA hybridization technique. Microbial Ecology, 1996, 31, 269-80.	2.8	40
99	A qualitative multi-attribute model for assessing the impact of cropping systems on soil quality. Pedobiologia, 2007, 51, 239-250.	1.2	40
100	A comparison of molecular methods for monitoring soil nematodes and their use as biological indicators. European Journal of Soil Biology, 2010, 46, 319-324.	3.2	38
101	Soil bacterial community structure and functional responses across a long-term mineral phosphorus (Pi) fertilisation gradient differ in grazed and cut grasslands. Applied Soil Ecology, 2019, 138, 134-143.	4.3	38
102	Nematode (Caenorhabditis elegans) movement in sand as affected by particle size, moisture and the presence of bacteria (Escherichia coli). European Journal of Soil Science, 1998, 49, 237-241.	3.9	37
103	Soil microbial biomass and activity under a potato crop fertilised with N with and without C. Biology and Fertility of Soils, 1992, 12, 265-271.	4.3	35
104	Responses by earthworms to reduced tillage in herbicide tolerant maize and Bt maize cropping systems. Pedobiologia, 2007, 51, 219-227.	1.2	35
105	Carbon mineralization kinetics and soil biological characteristics as influenced by manure addition in soil incubated at a range of temperatures. European Journal of Soil Biology, 2011, 47, 392-399.	3.2	35
106	Protozoa and nematodes on decomposing barley roots. Soil Biology and Biochemistry, 1993, 25, 1293-1295.	8.8	34
107	Dynamics of nematodes and protozoa following the experimental addition of cattle or pig slurry to soil. Soil Biology and Biochemistry, 1998, 30, 1379-1387.	8.8	34
108	The practicalities and pitfalls of establishing a policyâ€relevant and costâ€effective soil biological monitoring scheme. Integrated Environmental Assessment and Management, 2013, 9, 276-284.	2.9	34

#	Article	IF	CITATIONS
109	Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: Enzyme activity, kinetics and stability studies. Colloids and Surfaces B: Biointerfaces, 2014, 114, 342-348.	5.0	34
110	The need for standardisation: Exemplified by a description of the diversity, community structure and ecological indices of soil nematodes. Ecological Indicators, 2018, 87, 43-46.	6.3	34
111	Reflections on plant and soil nematode ecology: past, present and future. Journal of Nematology, 2012, 44, 115-26.	0.9	34
112	Potential application of a community hybridization technique for assessing changes in the population structure of soil microbial communities. Soil Biology and Biochemistry, 1994, 26, 963-971.	8.8	33
113	The nitrification inhibitor dicyandiamide increases mineralization–immobilization turnover in slurry-amended grassland soil. Journal of Agricultural Science, 2014, 152, 137-149.	1.3	33
114	Effects of carbon and nitrate additions to soil upon leaching of nitrate, microbial predators and nitrogen uptake by plants. Plant and Soil, 1987, 102, 229-237.	3.7	32
115	Earthworms change the abundance and community structure of nematodes and protozoa in a maize residue amended rice–wheat rotation agro-ecosystem. Soil Biology and Biochemistry, 2009, 41, 898-904.	8.8	31
116	Root Border Cells Take Up and Release Glucose-C. Annals of Botany, 2004, 93, 221-224.	2.9	30
117	Bioindication potential of using molecular characterisation of the nematode community: Response to soil tillage. European Journal of Soil Biology, 2012, 49, 92-97.	3.2	30
118	Effects of decomposing cadavers on soil nematode communities over a one-year period. Soil Biology and Biochemistry, 2016, 103, 405-416.	8.8	30
119	Variations in the rates of nitrification and denitrification during the growth of potatoes (Solanum) Tj ETQq1 1 0 plant yield. Biology and Fertility of Soils, 1991, 11, 157-162.	.784314 rg 4.3	BT /Overlock 29
120	Effects of compost stability on plant growth, microbiological parameters and nitrogen availability in media containing mixed garden-waste compost. Bioresource Technology, 1995, 54, 279-284.	9.6	29
121	Functional resilience of microbial communities from perturbed upland grassland soils to further persistent or transient stresses. Soil Biology and Biochemistry, 2006, 38, 2300-2306.	8.8	29
122	Soil factors determined nematode community composition in a two year pot experiment. Nematology, 2003, 5, 889-897.	0.6	28
123	Do bacterial-feeding nematodes stimulate root proliferation through hormonal effects?. Soil Biology and Biochemistry, 2007, 39, 1816-1819.	8.8	28
124	Responses of rice paddy micro-food webs to elevated CO2 are modulated by nitrogen fertilization and crop cultivars. Soil Biology and Biochemistry, 2017, 114, 104-113.	8.8	27
125	The influence of earthworms and cranefly larvae on the decomposition of uniformly 14C labelled plant material in soil. Journal of Soil Science, 1989, 40, 117-124.	1.2	26
126	Improved extraction of iodonitrotetrazoliumformazan from soil with dimethylformamide. Soil Biology and Biochemistry, 1989, 21, 179-180.	8.8	26

#	Article	IF	CITATIONS
127	A novel molecular approach for rapid assessment of soil nematode assemblages – variation, validation and potential applications. Methods in Ecology and Evolution, 2012, 3, 12-23.	5.2	26
128	Energy flux across multitrophic levels drives ecosystem multifunctionality: Evidence from nematode food webs. Soil Biology and Biochemistry, 2022, 169, 108656.	8.8	26
129	Soil fauna–microbe interactions: towards aÂconceptual framework forÂresearch. European Journal of Soil Biology, 2006, 42, S54-S60.	3.2	25
130	Soil microbial and faunal responses to herbicide tolerant maize and herbicide in two soils. Plant and Soil, 2008, 308, 93-103.	3.7	25
131	Root traits mediate functional guilds of soil nematodes in an ex-arable field. Soil Biology and Biochemistry, 2020, 151, 108038.	8.8	25
132	Some aspects of interrelations between fungi and other biota in forest soil. Mycological Research, 2004, 108, 933-946.	2.5	24
133	Resource utilization capability of bacteria predicts their invasion potential in soil. Soil Biology and Biochemistry, 2015, 81, 287-290.	8.8	24
134	The extent to which nematode communities are affected by soil factors-a pot experiment. Nematology, 2002, 4, 943-952.	0.6	23
135	Does the Presence of Detached Root Border Cells of Zea mays Alter the Activity of the Pathogenic Nematode Meloidogyne incognita?. Phytopathology, 2003, 93, 1111-1114.	2.2	22
136	Ecological interactions between fungi, other biota and forest litter composition in a unique Scottish woodland. Forestry, 2006, 79, 201-216.	2.3	22
137	Dynamics of nematode assemblages and soil function in adjacent restored and degraded soils following disturbance. European Journal of Soil Biology, 2012, 49, 37-46.	3.2	22
138	Applying Soil Health Indicators to Encourage Sustainable Soil Use: The Transition from Scientific Study to Practical Application. Sustainability, 2018, 10, 3021.	3.2	22
139	Some aspects of complex interactions involving soil mesofauna: analysis of the results from a Scottish woodland. Ecological Modelling, 2003, 170, 441-452.	2.5	21
140	Maize residue application reduces negative effects of soil salinity on the growth and reproduction of the earthworm Aporrectodea trapezoides, in a soil mesocosm experiment. Soil Biology and Biochemistry, 2012, 49, 46-51.	8.8	21
141	Mite community composition across a European transect and its relationships to variation in other components of soil biodiversity. Applied Soil Ecology, 2016, 97, 86-97.	4.3	21
142	Litter chemistry influences earthworm effects on soil carbon loss and microbial carbon acquisition. Soil Biology and Biochemistry, 2018, 123, 105-114.	8.8	21
143	Microbial population dynamics related to temporal variations in nitrification in three arable fields. European Journal of Soil Science, 2003, 54, 707-714.	3.9	20
144	The Impact of Bacterial Diet on the Migration and Navigation of Caenorhabditis elegans. Microbial Ecology, 2004, 48, 358-365.	2.8	20

#	Article	IF	CITATIONS
145	Broad-scale analysis of soil microbial community DNA from Upland grasslands. Antonie Van Leeuwenhoek, 1998, 73, 9-14.	1.7	19
146	Protozoa, nematodes and N-mineralization across a prescribed soil textural gradient. Pedobiologia, 2001, 45, 481-495.	1.2	19
147	Using nematode communities to test a European scale soil biological monitoring programme for policy development. Applied Soil Ecology, 2016, 97, 78-85.	4.3	19
148	Approaches to measuring the contribution of nematodes and protozoa to nitrogen mineralization in the rhizosphere. Soil Use and Management, 1990, 6, 88-90.	4.9	17
149	Links between substrate additions, native microbes, and the structural complexity and stability of soils. Soil Biology and Biochemistry, 1999, 31, 1541-1547.	8.8	17
150	MODELING DIFFUSION AND REACTION IN SOILS: V. NITROGEN TRANSFORMATIONS IN ORGANIC MANURE-AMENDED SOIL. Soil Science, 1997, 162, 157-168.	0.9	17
151	Digestion and excretion of nitrogen and carbohydrate by the cranefly larva Tipula paludosa (Diptera:) Tj ETQq1 1	0.784314 1.8	rgBT /Overlo
152	Growth of a ciliate protozoan in model ballotini systems of different particle sizes. Soil Biology and Biochemistry, 1994, 26, 1173-1178.	8.8	16
153	Stimulatory effects of bacterial-feeding nematodes on plant growth vary with nematode species. Nematology, 2011, 13, 369-372.	0.6	16
154	Pyrolysis–mass spectrometry confirms enrichment of lignin in the faeces of a wood-feeding termite, Zootermopsis nevadensis and depletion of peptides in a soil-feeder, Cubitermes ugandensis. Soil Biology and Biochemistry, 2013, 57, 957-959.	8.8	16
155	Greater coverage of the phylum Nematoda in SSU rDNA studies. Biology and Fertility of Soils, 2011, 47, 333-339.	4.3	15
156	General Surveillance of the soil ecosystem: An approach to monitoring unexpected adverse effects of GMO's. Ecological Indicators, 2012, 14, 107-113.	6.3	15
157	Potential of multiâ€objective models for riskâ€based mapping of the resilience characteristics of soils: demonstration at a national level. Soil Use and Management, 2009, 25, 66-77.	4.9	13
158	Application of an augmented nitrification assay to elucidate the effects of a spring barley crop and manures on temporal variations in rates. Biology and Fertility of Soils, 1997, 24, 378-383.	4.3	12
159	Conceptual framework underpinning management of soil health—supporting siteâ€specific delivery of sustainable agroâ€ecosystems. Food and Energy Security, 2019, 8, e00158.	4.3	12
160	Stable isotope analysis (<i>ĺ´</i> ¹³ C and <i>ĺ´</i> ¹⁵ N) of soil nematodes from four feeding groups. PeerJ, 2016, 4, e2372.	2.0	12
161	Organic amendments increase the flow uniformity of energy across nematode food webs. Soil Biology and Biochemistry, 2022, 170, 108695.	8.8	12
162	Proportion of Sewage Sludge to Soil Influences the Survival of <i>Salmonella</i> Dublin and <i>Escherichia coli</i> . Clean - Soil, Air, Water, 2018, 46, 1800042.	1.1	11

#	Article	IF	CITATIONS
163	Ecological interactions of heterotrophic flagellates, ciliates and naked amoebae in forest litter of the Dawyck Cryptogamic Sanctuary (Scotland, UK). European Journal of Protistology, 2003, 39, 183-198.	1.5	10
164	Considerations for Scottish soil monitoring in the European context. European Journal of Soil Science, 2009, 60, 833-843.	3.9	10
165	Restoration of Soil Physical and Biological Stability Are Not Coupled in Response to Plants and Earthworms. Ecological Restoration, 2008, 26, 102-104.	0.5	10
166	Contribution of bacterivorous nematodes to soil resistance and resilience under copper or heat stress. Soil Ecology Letters, 2020, 2, 220-229.	4.5	9
167	Microfaunal Interactions in the Rhizosphere, How Nematodes and Protozoa Link Above- and Belowground Processes. , 2007, , 57-71.		8
168	Plant treatment, pollutant load, and soil type effects in rhizosphere ecology of trace element polluted soils. Ecotoxicology and Environmental Safety, 2010, 73, 970-981.	6.0	8
169	A study of population numbers and ecological interactions of soil and forest floor microfauna. Animal Biology, 2007, 57, 467-484.	1.0	7
170	Does soil biology hold the key to optimized slurry management? A manifesto for research. Soil Use and Management, 2011, 27, 464-469.	4.9	7
171	Earthworms Reduce the Abundance of Nematodes and Enchytraeids in a Soil Mesocosm Experiment Despite Abundant Food Resources. Soil Science Society of America Journal, 2011, 75, 1774-1778.	2.2	7
172	Crop resistance traits modify the effects of an aboveground herbivore, brown planthopper, on soil microbial biomass and nematode community via changes to plant performance. Soil Biology and Biochemistry, 2012, 49, 157-166.	8.8	7
173	The geophagous earthworm Metaphire guillelmi effects on rhizosphere microbial community structure and functioning vary with plant species. Geoderma, 2020, 379, 114647.	5.1	7
174	Moderate grazing increases the structural complexity of soil micro-food webs by promoting root quantity and quality in a Tibetan alpine meadow. Applied Soil Ecology, 2021, 168, 104161.	4.3	7
175	Isolating the effect of soil properties on agricultural soil greenhouse gas emissions under controlled conditions. Soil Use and Management, 2020, 36, 285-298.	4.9	6
176	Roots with larger specific root length and C: N ratio sustain more complex rhizosphere nematode community. Plant and Soil, 2022, 477, 693-706.	3.7	6
177	A Quantitative Study of Changes Induced By Xiphinema Diversica Uda Tum in Root-Tip Galls of Strawberry and Ryegrass. Nematologica, 1988, 34, 198-207.	0.2	5
178	Ecological study of the forest litter meiofauna of a unique Scottish woodland. Animal Biology, 2006, 56, 69-93.	1.0	5
179	Risk Assessment of E. coli Survival Up to the Grazing Exclusion Period After Dairy Slurry, Cattle Dung, and Biosolids Application to Grassland. Frontiers in Sustainable Food Systems, 2018, 2, .	3.9	5
180	Role of microbial communities in conferring resistance and resilience of soil carbon and nitrogen cycling following contrasting stresses. European Journal of Soil Biology, 2021, 104, 103308.	3.2	5

#	Article	IF	CITATIONS
181	Soil Nitrogen Availability Is Reflected in the Bacterial Pathway. Pedosphere, 2011, 21, 26-30.	4.0	4
182	Probing soil physical and biological resilience data from a broad sampling of arable farms in Scotland. Soil Use and Management, 2015, 31, 491-503.	4.9	4
183	Community DNA hybridisation and %G+C profiles of microbial communities from heavy metal polluted soils. FEMS Microbiology Ecology, 1997, 24, 103-112.	2.7	4
184	Meeting on the Microbiology of Soils, Autumn 2001. European Journal of Protistology, 2002, 37, 371-373.	1.5	3
185	Resilience of soil functions to transient and persistent stresses is improved more by residue incorporation than the activity of earthworms. Applied Soil Ecology, 2019, 139, 10-14.	4.3	3
186	An Assessment of Climate Induced Increase in Soil Water Availability for Soil Bacterial Communities Exposed to Long-Term Differential Phosphorus Fertilization. Frontiers in Microbiology, 2020, 11, 682.	3.5	3
187	A technique for culturing enchytraeid worms on coniferous litter. Soil Biology and Biochemistry, 1986, 18, 123-124.	8.8	2
188	Refinement of Passive Nematode Recovery from Cotton Growing High Clay Content Australian Vertisols. Communications in Soil Science and Plant Analysis, 2017, 48, 316-325.	1.4	2
189	Huge increase in bacterivores on freshly killed barley roots. FEMS Microbiology Letters, 1992, 86, 303-309.	1.8	2
190	Distribution and Restricted Vertical Movement of Nematodes in a Heavy Clay Soil. Agronomy, 2020, 10, 221.	3.0	2