
Matthew T Wheeler Iii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1783055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Findings From Cardiovascular Evaluation of National Collegiate Athletic Association Division I Collegiate Student-Athletes After Asymptomatic or Mildly Symptomatic SARS-CoV-2 Infection. Clinical Journal of Sport Medicine, 2022, 32, 103-107.	1.8	12
2	The genetics of human performance. Nature Reviews Genetics, 2022, 23, 40-54.	16.3	25
3	Perceived utility and disutility of genomic sequencing for pediatric patients: Perspectives from parents with diverse sociodemographic characteristics. American Journal of Medical Genetics, Part A, 2022, 188, 1088-1101.	1.2	20
4	Prevalence and Cumulative Risk of Familial Idiopathic Dilated Cardiomyopathy. JAMA - Journal of the American Medical Association, 2022, 327, 454.	7.4	28
5	TOWARDS TRANSCRIPTOMICS AS A PRIMARY TOOL FOR RARE DISEASE INVESTIGATION. Journal of Physical Education and Sports Management, 2022, , mcs.a006198.	1.2	9
6	The response to cardiac resynchronization therapy in <scp>LMNA</scp> cardiomyopathy. European Journal of Heart Failure, 2022, 24, 685-693.	7.1	7
7	Clinical sites of the Undiagnosed Diseases Network: unique contributions to genomic medicine and science. Genetics in Medicine, 2021, 23, 259-271.	2.4	18
8	Biallelic UBE4A loss-of-function variants cause intellectual disability and global developmental delay. Genetics in Medicine, 2021, 23, 661-668.	2.4	2
9	"lt seems like COVID-19 now is the only disease present on Earth†living with a rare or undiagnosed disease during the COVID-19 pandemic. Genetics in Medicine, 2021, 23, 837-844.	2.4	19
10	Cardiopulmonary Exercise Testing With Echocardiography to Assess Recovery in Patients With Ventricular Assist Devices. ASAIO Journal, 2021, Publish Ahead of Print, 1134-1138.	1.6	2
11	Identification of rare and common regulatory variants in pluripotent cells using population-scale transcriptomics. Nature Genetics, 2021, 53, 313-321.	21.4	42
12	Genomic Context Differs Between Human Dilated Cardiomyopathy and Hypertrophic Cardiomyopathy. Journal of the American Heart Association, 2021, 10, e019944.	3.7	9
13	Compound heterozygous <i>KCTD7</i> variants in progressive myoclonus epilepsy. Journal of Neurogenetics, 2021, 35, 74-83.	1.4	4
14	Time trajectories in the transcriptomic response to exercise - a meta-analysis. Nature Communications, 2021, 12, 3471.	12.8	48
15	"Doctors can read about it, they can know about it, but they've never lived with it― How parents use social media throughout the diagnostic odyssey. Journal of Genetic Counseling, 2021, 30, 1707-1718.	1.6	10
16	Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation. JCI Insight, 2021, 6, .	5.0	38
17	Generation of three induced pluripotent stem cell lines from hypertrophic cardiomyopathy patients carrying MYH7 mutations. Stem Cell Research, 2021, 55, 102455.	0.7	2
18	Functional and structural analysis of cytokine-selective IL6ST defects that cause recessive hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2021, 148, 585-598.	2.9	20

#	Article	IF	CITATIONS
19	Valsartan in early-stage hypertrophic cardiomyopathy: a randomized phase 2 trial. Nature Medicine, 2021, 27, 1818-1824.	30.7	51
20	Mono- and Biallelic Protein-Truncating Variants in Alpha-Actinin 2 Cause Cardiomyopathy Through Distinct Mechanisms. Circulation Genomic and Precision Medicine, 2021, 14, CIRCGEN121003419.	3.6	8
21	Generation of three induced pluripotent stem cell lines from hypertrophic cardiomyopathy patients carrying TNNI3 mutations. Stem Cell Research, 2021, 57, 102597.	0.7	1
22	Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, The, 2020, 396, 759-769.	13.7	481
23	Silencing of <i>MYH7</i> ameliorates disease phenotypes in human iPSC-cardiomyocytes. Physiological Genomics, 2020, 52, 293-303.	2.3	29
24	De novo EIF2AK1 and EIF2AK2 Variants Are Associated with Developmental Delay, Leukoencephalopathy, and Neurologic Decompensation. American Journal of Human Genetics, 2020, 106, 570-583.	6.2	37
25	Accuracy of Smartphone Camera Applications for Detecting Atrial Fibrillation. JAMA Network Open, 2020, 3, e202064.	5.9	62
26	Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell, 2020, 181, 1464-1474.	28.9	147
27	Multimodality Imaging for Risk Assessment of Inherited Cardiomyopathies. Current Cardiovascular Risk Reports, 2020, 14, 1.	2.0	0
28	Outcomes in Patients With Cardiac Amyloidosis Undergoing Heart Transplantation. JACC: Heart Failure, 2020, 8, 461-468.	4.1	46
29	A comprehensive iterative approach is highly effective in diagnosing individuals who are exome negative. Genetics in Medicine, 2019, 21, 161-172.	2.4	60
30	Allele-Specific Silencing Ameliorates Restrictive Cardiomyopathy Attributable to a Human Myosin Regulatory Light Chain Mutation. Circulation, 2019, 140, 765-778.	1.6	26
31	Improving risk stratification in heart failure with preserved ejection fraction by combining two validated risk scores. Open Heart, 2019, 6, e000961.	2.3	13
32	The effect of digital physical activity interventions on daily step count: a randomised controlled crossover substudy of the MyHeart Counts Cardiovascular Health Study. The Lancet Digital Health, 2019, 1, e344-e352.	12.3	52
33	Yield of whole exome sequencing in undiagnosed patients facing insurance coverage barriers to genetic testing. Journal of Genetic Counseling, 2019, 28, 1107-1118.	1.6	42
34	Defining genotype-phenotype relationships in patients with hypertrophic cardiomyopathy using cardiovascular magnetic resonance imaging. PLoS ONE, 2019, 14, e0217612.	2.5	10
35	Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure. Nature Communications, 2019, 10, 2760.	12.8	22
36	Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nature Medicine, 2019, 25, 911-919.	30.7	221

MATTHEW T WHEELER III

#	Article	IF	CITATIONS
37	Extracutaneous manifestations in phacomatosis cesioflammea and cesiomarmorata: Case series and literature review. American Journal of Medical Genetics, Part A, 2019, 179, 966-977.	1.2	20
38	Regional Variation in <i>RBM20</i> Causes a Highly Penetrant Arrhythmogenic Cardiomyopathy. Circulation: Heart Failure, 2019, 12, e005371.	3.9	96
39	A toolkit for genetics providers in followâ€up of patients with nonâ€diagnostic exome sequencing. Journal of Genetic Counseling, 2019, 28, 213-228.	1.6	11
40	Targeting ferroptosis: A novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy. PLoS ONE, 2019, 14, e0214250.	2.5	59
41	Baseline Characteristics of the VANISH Cohort. Circulation: Heart Failure, 2019, 12, e006231.	3.9	10
42	Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Research, 2019, 47, D1018-D1027.	14.5	539
43	ClinPhen extracts and prioritizes patient phenotypes directly from medical records to expedite genetic disease diagnosis. Genetics in Medicine, 2019, 21, 1585-1593.	2.4	67
44	Applying current normative data to prognosis in heart failure: The Fitness Registry and the Importance of Exercise National Database (FRIEND). International Journal of Cardiology, 2018, 263, 75-79.	1.7	14
45	Biallelic Mutations in ATP5F1D, which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder. American Journal of Human Genetics, 2018, 102, 494-504.	6.2	59
46	A New Approach to Rare Diseases of Children: The Undiagnosed Diseases Network. Journal of Pediatrics, 2018, 196, 291-297.e2.	1.8	15
47	Long-read genome sequencing identifies causal structural variation in a Mendelian disease. Genetics in Medicine, 2018, 20, 159-163.	2.4	189
48	Effect of Genetic Diagnosis on Patients with Previously Undiagnosed Disease. New England Journal of Medicine, 2018, 379, 2131-2139.	27.0	261
49	Genome Sequencing in HypertrophicÂCardiomyopathy. Journal of the American College of Cardiology, 2018, 72, 430-433.	2.8	5
50	Exome sequencing identifies de novo pathogenic variants in <i>FBN1</i> and <i>TRPS1</i> in a patient with a complex connective tissue phenotype. Journal of Physical Education and Sports Management, 2017, 3, a001388.	1.2	8
51	The Undiagnosed Diseases Network: Accelerating Discovery about Health and Disease. American Journal of Human Genetics, 2017, 100, 185-192.	6.2	142
52	MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome. American Journal of Human Genetics, 2017, 100, 843-853.	6.2	181
53	Repeats and Survival in Myotonic Dystrophy Type 1. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	2
54	Effect of Moderate-Intensity Exercise Training on Peak Oxygen Consumption in Patients With Hypertrophic Cardiomyopathy. JAMA - Journal of the American Medical Association, 2017, 317, 1349.	7.4	160

#	Article	IF	CITATIONS
55	Contractile reserve and cardiopulmonary exercise parameters in patients with dilated cardiomyopathy, the two dimensions of exercise testing. Echocardiography, 2017, 34, 1179-1186.	0.9	8
56	Value of Strain Imaging and Maximal Oxygen Consumption in Patients With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2017, 120, 1203-1208.	1.6	10
57	Functional Cardiac Recovery and Hematologic Response to Chemotherapy in Patients With Light-Chain Amyloidosis (from the Stanford University Amyloidosis Registry). American Journal of Cardiology, 2017, 120, 1381-1386.	1.6	12
58	Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort. Journal of Personalized Medicine, 2017, 7, 3.	2.5	420
59	Abstract 21307: Beta-Blockers Inferior to Calcium Channel Blockers in Hypertrophic Cardiomyopathy. Circulation, 2017, 136, .	1.6	0
60	Exercise restrictions trigger psychological difficulty in active and athletic adults with hypertrophic cardiomyopathy. Open Heart, 2016, 3, e000488.	2.3	29
61	Medical implications of technical accuracy in genome sequencing. Genome Medicine, 2016, 8, 24.	8.2	123
62	Sports genetics moving forward: lessons learned from medical research. Physiological Genomics, 2016, 48, 175-182.	2.3	26
63	Systematic Comparison of Digital Electrocardiograms From Healthy Athletes and Patients With Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2015, 65, 2462-2463.	2.8	20
64	Systems Genomics Identifies a Key Role forÂHypocretin/Orexin Receptor-2 in Human Heart Failure. Journal of the American College of Cardiology, 2015, 66, 2522-2533.	2.8	31
65	Letter by Wheeler et al Regarding Article, "Recognition and Significance of Pathological T-Wave Inversions in Athletes― Circulation, 2015, 132, e180.	1.6	0
66	Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2015, 65, 570-572.	2.8	5
67	Computerized Q wave dimensions in athletes and hypertrophic cardiomyopathy patients. Journal of Electrocardiology, 2015, 48, 362-367.	0.9	16
68	Examining QRS amplitude criteria for electrocardiographic left ventricular hypertrophy in recommendations for screening criteria in athletes. Journal of Electrocardiology, 2015, 48, 368-372.	0.9	8
69	Personalized Preventive Medicine: Genetics and the Response to Regular Exercise in Preventive Interventions. Progress in Cardiovascular Diseases, 2015, 57, 337-346.	3.1	57
70	Clinical Interpretation and Implications of Whole-Genome Sequencing. JAMA - Journal of the American Medical Association, 2014, 311, 1035.	7.4	398
71	Abnormal Calcium Handling Properties Underlie Familial Hypertrophic Cardiomyopathy Pathology in Patient-Specific Induced Pluripotent Stem Cells. Cell Stem Cell, 2013, 12, 101-113.	11.1	584
72	Physical Activity and Other Health Behaviors in Adults With Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2013, 111, 1034-1039.	1.6	86

#	Article	IF	CITATIONS
73	A public resource facilitating clinical use of genomes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11920-11927.	7.1	194
74	DNA Sequencing. Circulation, 2012, 125, 931-944.	1.6	72
75	Interpretation of the Electrocardiogram of Young Athletes. Circulation, 2011, 124, 746-757.	1.6	204
76	Systems biology of heart failure, challenges and hopes. Current Opinion in Cardiology, 2011, 26, 314-321.	1.8	14
77	Phased Whole-Genome Genetic Risk in a Family Quartet Using a Major Allele Reference Sequence. PLoS Genetics, 2011, 7, e1002280.	3.5	137
78	Gene Coexpression Network Topology of Cardiac Development, Hypertrophy, and Failure. Circulation: Cardiovascular Genetics, 2011, 4, 26-35.	5.1	88
79	Addition of the Electrocardiogram to the Preparticipation Examination of College Athletes. Clinical Journal of Sport Medicine, 2010, 20, 98-105.	1.8	79
80	Cost-Effectiveness of Preparticipation Screening for Prevention of Sudden Cardiac Death in Young Athletes. Annals of Internal Medicine, 2010, 152, 276.	3.9	211
81	Extremely elevated lipoprotein(a), combined hyperlipidemia, and premature atherosclerosis in a Chinese family. Journal of Clinical Lipidology, 2010, 4, 543-547.	1.5	2
82	Clinical assessment incorporating a personal genome. Lancet, The, 2010, 375, 1525-1535.	13.7	637
83	Challenges in the clinical application of whole-genome sequencing. Lancet, The, 2010, 375, 1749-1751.	13.7	207
84	Mechanisms of exercise intolerance in patients with hypertrophic cardiomyopathy. American Heart Journal, 2009, 158, e27-e34.	2.7	32
85	Pharmacogenetics of Heart Failure: Evidence, Opportunities, and Challenges for Cardiovascular Pharmacogenomics. Journal of Cardiovascular Translational Research, 2008, 1, 25-36.	2.4	3
86	Skeletal Muscle Structure and Function. , 2006, , 674-681.		20
87	The interaction of coronary tone and cardiac fibrosis. Current Atherosclerosis Reports, 2005, 7, 219-226.	4.8	6
88	The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nature Immunology, 2004, 5, 1052-1060.	14.5	1,016
89	Functional nitric oxide synthase mislocalization in cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2004, 36, 213-223.	1.9	31
90	Secondary Coronary Artery Vasospasm Promotes Cardiomyopathy Progression. American Journal of Pathology, 2004, 164, 1063-1071.	3.8	34

MATTHEW T WHEELER III

#	Article	IF	CITATIONS
91	Smooth muscle cell–extrinsic vascular spasm arises from cardiomyocyte degeneration in sarcoglycan-deficient cardiomyopathy. Journal of Clinical Investigation, 2004, 113, 668-675.	8.2	64
92	Smooth muscle cell–extrinsic vascular spasm arises from cardiomyocyte degeneration in sarcoglycan-deficient cardiomyopathy. Journal of Clinical Investigation, 2004, 113, 668-675.	8.2	37
93	Sarcoglycans in Vascular Smooth and Striated Muscle. Trends in Cardiovascular Medicine, 2003, 13, 238-243.	4.9	34
94	Cytoskeletal defects in cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2003, 35, 231-241.	1.9	26
95	zeta-Sarcoglycan, a novel component of the sarcoglycan complex, is reduced in muscular dystrophy. Human Molecular Genetics, 2002, 11, 2147-2154.	2.9	82
96	Cardiomyopathy is independent of skeletal muscle disease in muscular dystrophy. FASEB Journal, 2002, 16, 1096-1098.	0.5	21
97	Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 KATP channels. Journal of Clinical Investigation, 2002, 110, 203-208.	8.2	173
98	Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 KATP channels. Journal of Clinical Investigation, 2002, 110, 203-208.	8.2	129
99	Cardiomyopathy in animal models of muscular dystrophy. Current Opinion in Cardiology, 2001, 16, 211-217.	1.8	19
100	Overexpression of \hat{I}^3 -Sarcoglycan Induces Severe Muscular Dystrophy. Journal of Biological Chemistry, 2001, 276, 21785-21790.	3.4	51
101	Wnt Signaling Interactor WTIP (Wilms Tumor Interacting Protein) Underlies Novel Mechanism for Cardiac Hypertrophy. Circulation Genomic and Precision Medicine, 0, , .	3.6	Ο