
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1782313/publications.pdf Version: 2024-02-01

VOLKER LOHMANN

#	Article	IF	CITATIONS
1	Replication of Subgenomic Hepatitis C Virus RNAs in a Hepatoma Cell Line. Science, 1999, 285, 110-113.	6.0	2,615
2	Identification of the Hepatitis C Virus RNA Replication Complex in Huh-7 Cells Harboring Subgenomic Replicons. Journal of Virology, 2003, 77, 5487-5492.	1.5	558
3	Replication of hepatitis C virus. Microbiology (United Kingdom), 2000, 81, 1631-1648.	0.7	537
4	Enhancement of Hepatitis C Virus RNA Replication by Cell Culture-Adaptive Mutations. Journal of Virology, 2001, 75, 4614-4624.	1.5	482
5	Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. Journal of Virology, 1997, 71, 8416-8428.	1.5	481
6	Recruitment and Activation of a Lipid Kinase by Hepatitis C Virus NS5A Is Essential for Integrity of the Membranous Replication Compartment. Cell Host and Microbe, 2011, 9, 32-45.	5.1	435
7	Mutations in Hepatitis C Virus RNAs Conferring Cell Culture Adaptation. Journal of Virology, 2001, 75, 1437-1449.	1.5	421
8	Assembly of infectious hepatitis C virus particles. Trends in Microbiology, 2011, 19, 95-103.	3.5	389
9	Characterization of the Early Steps of Hepatitis C Virus Infection by Using Luciferase Reporter Viruses. Journal of Virology, 2006, 80, 5308-5320.	1.5	363
10	Viral and Cellular Determinants of Hepatitis C Virus RNA Replication in Cell Culture. Journal of Virology, 2003, 77, 3007-3019.	1.5	356
11	Characterization of Cell Lines Carrying Self-Replicating Hepatitis C Virus RNAs. Journal of Virology, 2001, 75, 1252-1264.	1.5	336
12	The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nature Reviews Microbiology, 2013, 11, 482-496.	13.6	336
13	Persistent and Transient Replication of Full-Length Hepatitis C Virus Genomes in Cell Culture. Journal of Virology, 2002, 76, 4008-4021.	1.5	330
14	Sequences in the 5′ Nontranslated Region of Hepatitis C Virus Required for RNA Replication. Journal of Virology, 2001, 75, 12047-12057.	1.5	289
15	Interferon-Î ³ inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology, 2002, 35, 694-703.	3.6	286
16	Identification of hepatoprotective flavonolignans from silymarin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5995-5999.	3.3	262
17	Quantitative Analysis of the Hepatitis C Virus Replication Complex. Journal of Virology, 2005, 79, 13594-13605.	1.5	247
18	Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14416-14421.	3.3	244

#	Article	IF	CITATIONS
19	Essential Role of Cyclophilin A for Hepatitis C Virus Replication and Virus Production and Possible Link to Polyprotein Cleavage Kinetics. PLoS Pathogens, 2009, 5, e1000546.	2.1	233
20	Restoration of HCV-specific CD8+ T cell function by interferon-free therapy. Journal of Hepatology, 2014, 61, 538-543.	1.8	218
21	Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor. Journal of Hepatology, 2014, 60, 723-731.	1.8	217
22	Complex formation between the NS3 serine-type proteinase of the hepatitis C virus and NS4A and its importance for polyprotein maturation. Journal of Virology, 1995, 69, 7519-7528.	1.5	211
23	Analysis of Hepatitis C Virus Superinfection Exclusion by Using Novel Fluorochrome Gene-Tagged Viral Genomes. Journal of Virology, 2007, 81, 4591-4603.	1.5	198
24	Multiple effects of silymarin on the hepatitis C virus lifecycle. Hepatology, 2010, 51, 1912-1921.	3.6	191
25	Novel cell culture systems for the hepatitis C virus. Antiviral Research, 2001, 52, 1-17.	1.9	170
26	Dynamic Oscillation of Translation and Stress Granule Formation Mark the Cellular Response to Virus Infection. Cell Host and Microbe, 2012, 12, 71-85.	5.1	166
27	A replicon-based bioassay for the measurement of interferons in patients with chronic hepatitis C. Journal of Virological Methods, 2003, 110, 201-209.	1.0	161
28	Biochemical and Kinetic Analyses of NS5B RNA-Dependent RNA Polymerase of the Hepatitis C Virus. Virology, 1998, 249, 108-118.	1.1	144
29	Hepatitis C Virus-Replicating Hepatocytes Induce Fibrogenic Activation of Hepatic Stellate Cells. Gastroenterology, 2005, 129, 246-258.	0.6	139
30	Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology, 2012, 56, 2082-2093.	3.6	138
31	Daclatasvir-Like Inhibitors of NS5A Block Early Biogenesis of Hepatitis C Virus–Induced Membranous Replication Factories, Independent of RNA Replication. Gastroenterology, 2014, 147, 1094-1105.e25.	0.6	135
32	Ultrastructure of the replication sites of positive-strand RNA viruses. Virology, 2015, 479-480, 418-433.	1.1	130
33	Critical challenges and emerging opportunities in hepatitis C virus research in an era of potent antiviral therapy: Considerations for scientists and funding agencies. Virus Research, 2018, 248, 53-62.	1.1	124
34	Membrane Association of the RNA-Dependent RNA Polymerase Is Essential for Hepatitis C Virus RNA Replication. Journal of Virology, 2004, 78, 13278-13284.	1.5	121
35	Production of Infectious Genotype 1b Virus Particles in Cell Culture and Impairment by Replication Enhancing Mutations. PLoS Pathogens, 2009, 5, e1000475.	2.1	116
36	Hepatitis C Virus RNA Replication. Current Topics in Microbiology and Immunology, 2013, 369, 167-198.	0.7	116

#	Article	IF	CITATIONS
37	Role of Annexin A2 in the Production of Infectious Hepatitis C Virus Particles. Journal of Virology, 2010, 84, 5775-5789.	1.5	114
38	The heme oxygenase 1 product biliverdin interferes with hepatitis C virus replication by increasing antiviral interferon response. Hepatology, 2010, 51, 398-404.	3.6	113
39	Molecular Mechanism of Signal Perception and Integration by the Innate Immune Sensor Retinoic Acid-inducible Gene-I (RIG-I). Journal of Biological Chemistry, 2011, 286, 27278-27287.	1.6	112
40	The Lipid Kinase Phosphatidylinositol-4 Kinase III Alpha Regulates the Phosphorylation Status of Hepatitis C Virus NS5A. PLoS Pathogens, 2013, 9, e1003359.	2.1	110
41	A target on the move: Innate and adaptive immune escape strategies of hepatitis C virus. Antiviral Research, 2006, 69, 129-141.	1.9	109
42	Analysis of CD8+ T-Cell–Mediated Inhibition of Hepatitis C Virus Replication Using a Novel Immunological Model. Gastroenterology, 2009, 136, 1391-1401.	0.6	108
43	Hepatitis C virus replication cycle. Journal of Hepatology, 2010, 53, 583-585.	1.8	101
44	Hepatitis C virus escape from the interferon regulatory factor 3 pathway by a passive and active evasion strategy. Hepatology, 2007, 46, 1365-1374.	3.6	100
45	Mouse Hepatic Cells Support Assembly of Infectious Hepatitis C Virus Particles. Gastroenterology, 2011, 141, 1057-1066.	0.6	100
46	Modulation of the Host Lipid Landscape to Promote RNA Virus Replication: The Picornavirus Encephalomyocarditis Virus Converges on the Pathway Used by Hepatitis C Virus. PLoS Pathogens, 2015, 11, e1005185.	2.1	93
47	Identification of Determinants Involved in Initiation of Hepatitis C Virus RNA Synthesis by Using Intergenotypic Replicase Chimeras. Journal of Virology, 2007, 81, 5270-5283.	1.5	92
48	microRNA-122 amplifies hepatitis C virus translation by shaping the structure of the internal ribosomal entry site. Nature Communications, 2018, 9, 2613.	5.8	90
49	Selective Stimulation of Hepatitis C Virus and Pestivirus NS5B RNA Polymerase Activity by GTP. Journal of Biological Chemistry, 1999, 274, 10807-10815.	1.6	84
50	The Hepatitis C Virus RNA-Dependent RNA Polymerase Membrane Insertion Sequence Is a Transmembrane Segment. Journal of Virology, 2002, 76, 13088-13093.	1.5	81
51	Dissecting the Interferon-Induced Inhibition of Hepatitis C Virus Replication by Using a Novel Host Cell Line. Journal of Virology, 2005, 79, 13778-13793.	1.5	81
52	Monocytes Activate Natural Killer Cells via Inflammasome-Induced Interleukin 18 in Response to Hepatitis C Virus Replication. Gastroenterology, 2014, 147, 209-220.e3.	0.6	81
53	Flavivirus Infection Uncouples Translation Suppression from Cellular Stress Responses. MBio, 2017, 8,	1.8	81
54	Mutagenic Effect of Ribavirin on Hepatitis C Nonstructural 5B Quasispecies In Vitro and During Antiviral Therapy. Gastroenterology, 2007, 132, 921-930.	0.6	79

#	Article	IF	CITATIONS
55	Replication Vesicles are Load- and Choke-Points in the Hepatitis C Virus Lifecycle. PLoS Pathogens, 2013, 9, e1003561.	2.1	77
56	On the History of Hepatitis C Virus Cell Culture Systems. Journal of Medicinal Chemistry, 2014, 57, 1627-1642.	2.9	77
57	NS5A Domain 1 and Polyprotein Cleavage Kinetics Are Critical for Induction of Double-Membrane Vesicles Associated with Hepatitis C Virus Replication. MBio, 2015, 6, e00759.	1.8	75
58	Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis. Journal of Virology, 2018, 92, .	1.5	75
59	Hepatitis C virus RNA replication is resistant to tumour necrosis factor-α. Journal of General Virology, 2003, 84, 1253-1259.	1.3	74
60	In VitroStudies on the Activation of the Hepatitis C Virus NS3 Proteinase by the NS4A Cofactor. Virology, 1996, 221, 54-66.	1.1	71
61	Biochemical and structural analysis of the NS5B RNA-dependent RNA polymerase of the hepatitis C virus. Journal of Viral Hepatitis, 2000, 7, 167-174.	1.0	68
62	Structural and Functional Analysis of Hepatitis C Virus Strain JFH1 Polymerase. Journal of Virology, 2009, 83, 11926-11939.	1.5	68
63	Inhibition of HCV Replication by Cyclophilin Antagonists Is Linked to Replication Fitness and Occurs by Inhibition of Membranous Web Formation. Gastroenterology, 2014, 146, 1361-1372.e9.	0.6	67
64	Membrane alterations induced by nonstructural proteins of human norovirus. PLoS Pathogens, 2017, 13, e1006705.	2.1	64
65	Secretion of Hepatitis C Virus Replication Intermediates Reduces Activation of Toll-Like Receptor 3 in Hepatocytes. Gastroenterology, 2018, 154, 2237-2251.e16.	0.6	63
66	Identification of HNRNPK as Regulator of Hepatitis C Virus Particle Production. PLoS Pathogens, 2015, 11, e1004573.	2.1	56
67	A Comprehensive Structure-Function Comparison of Hepatitis C Virus Strain JFH1 and J6 Polymerases Reveals a Key Residue Stimulating Replication in Cell Culture across Genotypes. Journal of Virology, 2011, 85, 2565-2581.	1.5	55
68	Replication of the hepatitis C virus. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2000, 14, 241-254.	1.0	54
69	Hepatitis C Virus NS2/3 Processing Is Required for NS3 Stability and Viral RNA Replication. Journal of Biological Chemistry, 2005, 280, 29604-29611.	1.6	54
70	Tuning a cellular lipid kinase activity adapts hepatitis C virus to replication in cell culture. Nature Microbiology, 2017, 2, 16247.	5.9	52
71	Immunodominance of HLA-A2-Restricted Hepatitis C Virus-Specific CD8 ⁺ T Cell Responses Is Linked to NaÃ ⁻ ve-Precursor Frequency. Journal of Virology, 2011, 85, 5232-5236.	1.5	51
72	DDX60L Is an Interferon-Stimulated Gene Product Restricting Hepatitis C Virus Replication in Cell Culture. Journal of Virology, 2015, 89, 10548-10568.	1.5	50

#	Article	IF	CITATIONS
73	Protective effect of human leukocyte antigen B27 in hepatitis C virus infection requires the presence of a genotype-specific immunodominant CD8+ T-cell epitope. Hepatology, 2010, 51, 54-62.	3.6	48
74	Human leukocyte antigen B27 selects for rare escape mutations that significantly impair hepatitis C virus replication and require compensatory mutations. Hepatology, 2011, 54, 1157-1166.	3.6	47
75	Control of temporal activation of hepatitis C virus-induced interferon response by domain 2 of nonstructural protein 5A. Journal of Hepatology, 2015, 63, 829-837.	1.8	47
76	Analysis of hepatitis C virus resistance to silibinin <i>in vitro</i> and <i>in vivo</i> points to a novel mechanism involving nonstructural protein 4B. Hepatology, 2013, 57, 953-963.	3.6	44
77	Phosphorylation-Dependent Feedback Inhibition of RIG-I by DAPK1 Identified by Kinome-wide siRNA Screening. Molecular Cell, 2017, 65, 403-415.e8.	4.5	40
78	Factors That Determine the Antiviral Efficacy of HCV-Specific CD8+ T Cells Ex Vivo. Gastroenterology, 2013, 144, 426-436.	0.6	38
79	Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation. Nature Communications, 2021, 12, 7276.	5.8	37
80	Novel perspectives for hepatitis A virus therapy revealed by comparative analysis of hepatitis C virus and hepatitis A virus RNA replication. Hepatology, 2015, 62, 397-408.	3.6	36
81	Mapping of Functional Domains of the Lipid Kinase Phosphatidylinositol 4-Kinase Type III Alpha Involved in Enzymatic Activity and Hepatitis C Virus Replication. Journal of Virology, 2014, 88, 9909-9926.	1.5	35
82	Relationships between Hepatitis C Virus Replication and CXCL-8 Production In Vitro. Journal of Virology, 2006, 80, 7885-7893.	1.5	34
83	Annexin A2 as a differential diagnostic marker of hepatocellular tumors. Pathology Research and Practice, 2011, 207, 8-14.	1.0	33
84	Overall Structural Model of NS5A Protein from Hepatitis C Virus and Modulation by Mutations Confering Resistance of Virus Replication to Cyclosporin A. Biochemistry, 2017, 56, 3029-3048.	1.2	29
85	HCV Replicons: Overview and Basic Protocols. Methods in Molecular Biology, 2009, 510, 145-163.	0.4	27
86	Rapid Antigen Processing and Presentation of a Protective and Immunodominant HLA-B*27-restricted Hepatitis C Virus-specific CD8+ T-cell Epitope. PLoS Pathogens, 2012, 8, e1003042.	2.1	25
87	TCR-Redirected Human T Cells Inhibit Hepatitis C Virus Replication: Hepatotoxic Potential Is Linked to Antigen Specificity and Functional Avidity. Journal of Immunology, 2012, 189, 4510-4519.	0.4	24
88	Differing and isoform-specific roles for the formin DIAPH3 in plasma membrane blebbing and filopodia formation. Cell Research, 2012, 22, 728-745.	5.7	23
89	Hepatitis C virus cell culture models: an encomium on basic research paving the road to therapy development. Medical Microbiology and Immunology, 2019, 208, 3-24.	2.6	23
90	Bile Acids Specifically Increase Hepatitis C Virus RNA-Replication. PLoS ONE, 2012, 7, e36029.	1.1	23

#	Article	IF	CITATIONS
91	Hepatitis C virus-induced natural killer cell proliferation involves monocyte-derived cells and the OX40/OX40L axis. Journal of Hepatology, 2018, 68, 421-430.	1.8	22
92	Experimental models to study the immunobiology of hepatitis C virus. Journal of General Virology, 2011, 92, 477-493.	1.3	19
93	An Integrated Transcriptomic and Meta-Analysis of Hepatoma Cells Reveals Factors That Influence Susceptibility to HCV Infection. PLoS ONE, 2011, 6, e25584.	1.1	18
94	Mutations in Encephalomyocarditis Virus 3A Protein Uncouple the Dependency of Genome Replication on Host Factors Phosphatidylinositol 4-Kinase IIIα and Oxysterol-Binding Protein. MSphere, 2016, 1, .	1.3	18
95	Matrix Conditions and KLF2-Dependent Induction of Heme Oxygenase-1 Modulate Inhibition of HCV Replication by Fluvastatin. PLoS ONE, 2014, 9, e96533.	1.1	17
96	Nonstructural protein 5A does not contribute to the resistance of hepatitis C virus replication to interferon alpha in cell culture. Virology, 2005, 336, 131-136.	1.1	16
97	Tyrphostin AG1478 Inhibits Encephalomyocarditis Virus and Hepatitis C Virus by Targeting Phosphatidylinositol 4-Kinase IIIα. Antimicrobial Agents and Chemotherapy, 2016, 60, 6402-6406.	1.4	15
98	Low perforin expression of early differentiated HCV-specific CD8+ T cells limits their hepatotoxic potential. Journal of Hepatology, 2012, 57, 9-16.	1.8	14
99	Hepatitis C virus replicons: dinosaurs still in business?. Journal of Viral Hepatitis, 2009, 16, 1-9.	1.0	13
100	Hepatitis C Virus-Specific T Cell Receptor mRNA-Engineered Human T Cells: Impact of Antigen Specificity on Functional Properties. Journal of Virology, 2017, 91, .	1.5	13
101	Interferon lambda 4 impairs hepatitis C viral antigen presentation and attenuates T cell responses. Nature Communications, 2021, 12, 4882.	5.8	13
102	Foot-and-mouth disease virus replicates independently of phosphatidylinositol 4-phosphate and type III phosphatidylinositol 4-kinases. Journal of General Virology, 2016, 97, 1841-1852.	1.3	12
103	The Accelerating Pace of HCV Research: A Summary of the 15th International Symposium on Hepatitis C Virus and Related Viruses. Gastroenterology, 2009, 136, 9-16.	0.6	11
104	Generation of T-cell receptors targeting a genetically stable and immunodominant cytotoxic T-lymphocyte epitope within hepatitis C virus non-structural protein 3. Journal of General Virology, 2012, 93, 247-258.	1.3	10
105	Type I and type II interferon responses in two human liver cell lines (Huh-7 and HuH6). Genomics Data, 2016, 7, 166-170.	1.3	9
106	SEC14L2, a lipid-binding protein, regulates HCV replication in culture with inter- and intra-genotype variations. Journal of Hepatology, 2019, 70, 603-614.	1.8	9
107	Characterization of a Threonine-Rich Cluster in Hepatitis C Virus Nonstructural Protein 5A and Its Contribution to Hyperphosphorylation. Journal of Virology, 2018, 92, .	1.5	7
108	Indelibly Stamped by Hepatitis C Virus Infection: Persistent Epigenetic Signatures Increasing Liver Cancer Risk. Gastroenterology, 2019, 156, 2130-2133.	0.6	7

VOLKER LOHMANN

#	Article	IF	CITATIONS
109	Inhibition of Hepatitis C Replication by Targeting the Molecular Chaperone Hsp90: Synthesis and Biological Evaluation of 4,5,6,7â€Tetrahydrobenzo[1,2―d]thiazole Derivatives. ChemMedChem, 2019, 14, 334-342.	1.6	7
110	Process Development for Adoptive Cell Therapy in Academia: A Pipeline for Clinical-Scale Manufacturing of Multiple TCR-T Cell Products. Frontiers in Immunology, 0, 13, .	2.2	6
111	Hepatitis C Virus Replicons Volume 3 and 4. Gastroenterology, 2013, 144, 13-15.	0.6	5
112	Interaction and Mutual Activation of Different Innate Immune Cells Is Necessary to Kill and Clear Hepatitis C Virus-Infected Cells. Frontiers in Immunology, 2017, 8, 1238.	2.2	5
113	A Hepatitis C virus genotype 1b post-transplant isolate with high replication efficiency in cell culture and its adaptation to infectious virus production in vitro and in vivo. PLoS Pathogens, 2022, 18, e1010472.	2.1	5
114	In vitro replicative properties of replicons constructed using sequence variants of the hepatitis C virus strain AD78 that caused a single-source outbreak of hepatitis C. Virus Research, 2009, 142, 1-9.	1.1	4
115	PI4KIII inhibitor enviroxime impedes the replication of the hepatitis C virus by inhibiting PI3 kinases. Journal of Antimicrobial Chemotherapy, 2018, 73, 3375-3384.	1.3	4
116	Evidence for Internal Initiation of RNA Synthesis by the Hepatitis C Virus RNA-Dependent RNA Polymerase NS5B In Cellulo. Journal of Virology, 2019, 93, .	1.5	4
117	The cyclophilin-inhibitor alisporivir stimulates antigen presentation thereby promoting antigen-specific CD8+ T cell activation. Journal of Hepatology, 2016, 64, 1305-1314.	1.8	3
118	The HCV Replicase Complex and Viral RNA Synthesis. , 2016, , 149-196.		1
119	The Replicon System as an Efficient Tool to Study HCV RNA Replication. , 2005, 25, 81-95.		0
120	Hepatitis C Virus Replication in Cell Culture. , 2004, , 108-122.		0

Hepatitis C Virus Replication in Cell Culture. , 2004, , 108-122. 120

8