Katarina Le Blanc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1780794/publications.pdf

Version: 2024-02-01

201674 243625 10,240 50 27 44 citations h-index g-index papers 50 50 50 11217 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immunohistopathology of oral mucosal chronic graftâ€versusâ€host disease severity and duration. Oral Diseases, 2023, 29, 3346-3359.	3.0	2
2	Diversity of respiratory parameters and metabolic adaptation to low oxygen tension in mesenchymal stromal cells. Metabolism Open, 2022, 13, 100167.	2.9	2
3	Consensus International Council for Commonality in Blood Banking Automation–International Society for Cell & Dene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells. Cytotherapy, 2021, 23, 1060-1063.	0.7	15
4	Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell, 2021, 28, 1708-1725.	11.1	114
5	Five-Year Follow-up after Mesenchymal Stromal Cell–based Treatment of Severe Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1051-1055.	5.6	9
6	Challenges for mesenchymal stromal cell therapies. Science Translational Medicine, 2019, 11, .	12.4	126
7	Short and Long Term Clinical and Immunologic Follow up after Bone Marrow Mesenchymal Stromal Cell Therapy in Progressive Multiple Sclerosis—A Phase I Study. Journal of Clinical Medicine, 2019, 8, 2102.	2.4	20
8	Phenotypic and functional alterations of myeloidâ€derived suppressor cells during the disease course of multiple sclerosis. Immunology and Cell Biology, 2018, 96, 820-830.	2.3	38
9	MSCs—cells with many sides. Cytotherapy, 2018, 20, 273-278.	0.7	91
10	Stromal progenitor cell modulation by thalidomide in the treatment of oral chronic graft-versus-host disease. Cytotherapy, 2018, 20, 755-758.	0.7	1
11	Manufacturing Mesenchymal Stromal Cells for the Treatment of Graft-versus-Host Disease: A Survey among Centers Affiliated with the European Society for Blood and Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 2365-2370.	2.0	61
12	Impact of Pretransplantation Indices in Hematopoietic Stem Cell Transplantation: Knowledge of Center-Specific Outcome Data Is Pivotal before Making Index-Based Decisions. Biology of Blood and Marrow Transplantation, 2017, 23, 677-683.	2.0	12
13	Commentary: Role of Mesenchymal Stromal Cell–Mediated Crosstalk with Macrophages in Graft-versus-Host Disease and Tissue Repair. Biology of Blood and Marrow Transplantation, 2017, 23, 861-862.	2.0	7
14	Mesenchymal Stromal Cells Disrupt mTOR-Signaling and Aerobic Glycolysis During T-Cell Activation. Stem Cells, 2016, 34, 516-521.	3.2	39
15	Heparinization of cell surfaces with short peptide-conjugated PEG-lipid regulates thromboinflammation in transplantation of human MSCs and hepatocytes. Acta Biomaterialia, 2016, 35, 194-205.	8.3	24
16	Wnt/l²-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells. Stem Cell Reports, 2016, 6, 607-617.	4.8	20
17	Type 1 Diabetes Mellitus Donor Mesenchymal Stromal Cells Exhibit Comparable Potency to Healthy Controls In Vitro. Stem Cells Translational Medicine, 2016, 5, 1485-1495.	3.3	51
18	MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC. Scientific Reports, 2016, 6, 29160.	3.3	43

#	Article	IF	CITATIONS
19	Targeting Suppressive Myeloid Cells Potentiates Checkpoint Inhibitors to Control Spontaneous Neuroblastoma. Clinical Cancer Research, 2016, 22, 3849-3859.	7.0	109
20	Manufacturing of Mesenchymal Stromal Cells for the Treatment of Graft-Versus-Host Disease: A Survey within the European Society of Blood and Marrow Transplantation. Blood, 2016, 128, 3374-3374.	1.4	0
21	Enhanced oral healing following local mesenchymal stromal cell therapy. Oral Oncology, 2015, 51, e97-e99.	1.5	3
22	MSCs: Scientific Support for Multiple Therapies. Stem Cells International, 2015, 2015, 1-2.	2.5	12
23	Mesenchymal stromal cells and the innate immune response. Immunology Letters, 2015, 168, 140-146.	2.5	204
24	Stromal cell–mediated glycolytic switch in CLL cells involves Notch-c-Myc signaling. Blood, 2015, 125, 3432-3436.	1.4	76
25	In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome. Stem Cells Translational Medicine, 2015, 4, 1199-1213.	3.3	131
26	Phenotypic and Functional Alterations of Bone Marrow Mesenchymal Stem and Progenitor Cells in Chronic Myeloid Leukemia. Blood, 2015, 126, 2398-2398.	1.4	0
27	Do ABO Blood Group Antigens Hamper the Therapeutic Efficacy of Mesenchymal Stromal Cells?. PLoS ONE, 2014, 9, e85040.	2.5	61
28	Defined serum-free media for in vitro expansion of adipose-derived mesenchymal stem cells. Cytotherapy, 2014, 16, 915-926.	0.7	48
29	CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood, 2014, 124, 750-760.	1.4	206
30	Myeloid-derived suppressor cells in allogeneic hematopoietic stem cell transplantation. Oncolmmunology, 2013, 2, e25009.	4.6	13
31	Multipotent mesenchymal stromal cells and the innate immune system. Nature Reviews Immunology, 2012, 12, 383-396.	22.7	811
32	Lymphocyte Recovery Is a Major Determinant of Outcome after Matched Unrelated Myeloablative Transplantation for Myelogenous Malignancies. Biology of Blood and Marrow Transplantation, 2009, 15, 1108-1115.	2.0	100
33	Human Mesenchymal Stem Cells Elicit Complement Activation in Human Blood Blood, 2009, 114, 4580-4580.	1.4	0
34	Persistence of Human Parvovirus B19 in Multipotent Mesenchymal Stromal Cells Expressing the Erythrocyte P Antigen: Implications for Transplantation. Biology of Blood and Marrow Transplantation, 2008, 14, 1172-1179.	2.0	31
35	Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, The, 2008, 371, 1579-1586.	13.7	2,474
36	HLA Mismatched MSC Suppress T Lymphocyte Allo responses in Vitro and Do Not Induce Immunological Memory in Recipients of MSC Infusion. Blood, 2008, 112, 4740-4740.	1.4	0

3

#	Article	IF	CITATIONS
37	Generation of Immunosuppressive Mesenchymal Stem Cells in Allogeneic Human Serum. Transplantation, 2007, 84, 1055-1059.	1.0	57
38	Immune Escape and Suppression by Human Mesenchymal Stem Cells. , 2006, , 233-245.		0
39	Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Current Opinion in Immunology, 2006, 18, 586-591.	5.5	202
40	Mesenchymal Stem Cells for Treatment of Severe Acute Graft-Versus-Host Disease Blood, 2006, 108, 2918-2918.	1.4	4
41	Mesenchymal Stem Cells for Treatment of Severe Acute Graft-Versus-Host Disease Blood, 2006, 108, 5304-5304.	1.4	8
42	Fetal Mesenchymal Stem-Cell Engraftment in Bone after In Utero Transplantation in a Patient with Severe Osteogenesis Imperfecta. Transplantation, 2005, 79, 1607-1614.	1.0	397
43	Immunobiology of Human Mesenchymal Stem Cells and Future Use in Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2005, 11, 321-334.	2.0	429
44	Mesenchymal Stem Cells for Treatment of Severe Acute and Extensive Chronic Graft-Versus-Host Disease Blood, 2005, 106, 143-143.	1.4	3
45	Transplantation of Haplo-Identical Bone Marrow-Derived Mesenchymal Stem Cells Together with Hematopoietic Stem Cells To Promote Engraftment in Children. A Phase I/II Multicenter Study Blood, 2005, 106, 2911-2911.	1.4	0
46	Use of mesenchymal stem cells for the prevention of immune complications of hematopoietic stem cell transplantation. Haematologica, 2005, 90, 438.	3.5	21
47	Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, The, 2004, 363, 1439-1441.	13.7	2,534
48	A Comparison of Nonmyeloablative and Reduced-Intensity Conditioning for Allogeneic Stem-Cell Transplantation. Transplantation, 2004, 78, 1014-1020.	1.0	59
49	HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology, 2003, 31, 890-896.	0.4	1,510
50	A low body mass index is correlated with poor survival after allogeneic stem cell transplantation. Haematologica, 2003, 88, 1044-52.	3.5	62