Maria J Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1780593/publications.pdf

Version: 2024-02-01

26630 66911 12,989 80 56 citations h-index papers

g-index 85 85 85 7610 docs citations times ranked citing authors all docs

78

#	Article	IF	CITATIONS
1	A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi. Plant Cell, 2002, 14, 2413-2429.	6.6	733
2	Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant Journal, 2004, 39, 629-642.	5.7	719
3	SIGNALING IN THE ARBUSCULAR MYCORRHIZAL SYMBIOSIS. Annual Review of Microbiology, 2005, 59, 19-42.	7.3	647
4	A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1720-1725.	7.1	634
5	A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature, 1995, 378, 626-629.	27.8	575
6	Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant Journal, 2007, 50, 529-544.	5.7	430
7	MOLECULAR AND CELLULAR ASPECTS OF THE ARBUSCULAR MYCORRHIZAL SYMBIOSIS. Annual Review of Plant Biology, 1999, 50, 361-389.	14.3	397
8	Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant, Cell and Environment, 2007, 30, 310-322.	5.7	339
9	A Chloroplast Phosphate Transporter, PHT2;1, Influences Allocation of Phosphate within the Plant and Phosphate-Starvation Responses. Plant Cell, 2002, 14, 1751-1766.	6.6	310
10	Transcript Profiling Coupled with Spatial Expression Analyses Reveals Genes Involved in Distinct Developmental Stages of an Arbuscular Mycorrhizal Symbiosis [W]. Plant Cell, 2003, 15, 2106-2123.	6.6	309
11	Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biology, 2009, 9, 10.	3.6	277
12	The <i>Medicago truncatula </i> ortholog of Arabidopsis EIN2, <i>sickle </i> , is a negative regulator of symbiotic and pathogenic microbial associations. Plant Journal, 2008, 55, 580-595.	5.7	272
13	DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E5025-34.	7.1	266
14	Cloning and Characterization of Two Phosphate Transporters from Medicago truncatula Roots: Regulation in Response to Phosphate and to Colonization by Arbuscular Mycorrhizal (AM) Fungi. Molecular Plant-Microbe Interactions, 1998, 11, 14-22.	2.6	264
15	A Phosphate Transporter Gene from the Extra-Radical Mycelium of an Arbuscular Mycorrhizal Fungus Glomus intraradices Is Regulated in Response to Phosphate in the Environment. Molecular Plant-Microbe Interactions, 2001, 14, 1140-1148.	2.6	261
16	Arbuscular mycorrhizaâ€specific enzymes FatM and <scp>RAM</scp> 2 fineâ€tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytologist, 2017, 214, 1631-1645.	7.3	260
17	Isoflavonoid Accumulation and Expression of Defense Gene Transcripts During the Establishment of Vesicular-Arbuscular Mycorrhizal Associations in Roots of <i>Medicago truncatula </i> Plant-Microbe Interactions, 1993, 6, 643.	2.6	244
18	Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis. Plant Cell, 2017, 29, 2319-2335.	6.6	241

#	Article	IF	CITATIONS
19	The Down-Regulation of Mt4-Like Genes by Phosphate Fertilization Occurs Systemically and Involves Phosphate Translocation to the Shoots1. Plant Physiology, 1999, 119, 241-248.	4.8	229
20	Two <i>Medicago truncatula</i> Half-ABC Transporters Are Essential for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis. Plant Cell, 2010, 22, 1483-1497.	6.6	223
21	Live-Cell Imaging Reveals Periarbuscular Membrane Domains and Organelle Location in <i>Medicago truncatula</i> Roots during Arbuscular Mycorrhizal Symbiosis Â. Plant Physiology, 2009, 151, 809-819.	4.8	215
22	Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant Journal, 1994, 6, 9-20.	5.7	207
23	Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nature Plants, 2016, 2, 15208.	9.3	206
24	Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant Journal, 2006, 45, 712-726.	5.7	205
25	<i>Medicago truncatula</i> Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant Journal, 2010, 61, 482-494.	5.7	198
26	A sugar transporter from Medicago truncatula: altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations. Plant Journal, 1996, 9, 491-503.	5.7	192
27	A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule Branching. Current Biology, 2016, 26, 987-998.	3.9	182
28	Suppression of Arbuscule Degeneration in <i>Medicago truncatula phosphate transporter4</i> Mutants Is Dependent on the Ammonium Transporter 2 Family Protein AMT2;3. Plant Cell, 2015, 27, 1352-1366.	6.6	180
29	The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant Journal, 2001, 25, 281-293.	5.7	176
30	Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E665-72.	7.1	164
31	Reprogramming Plant Cells for Endosymbiosis. Science, 2009, 324, 753-754.	12.6	160
32	The arbuscular mycorrhizal symbiosis: an underground association. Trends in Plant Science, 1997, 2, 54-60.	8.8	155
33	A comprehensive draft genome sequence for lupin (<i>Lupinus angustifolius</i>), an emerging health food: insights into plant–microbe interactions and legume evolution. Plant Biotechnology Journal, 2017, 15, 318-330.	8.3	153
34	Cellular programs for arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2012, 15, 691-698.	7.1	151
35	RNA Interference Identifies a Calcium-Dependent Protein Kinase Involved in Medicago truncatula Root Development. Plant Cell, 2005, 17, 2911-2921.	6.6	147
36	The halfâ€size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant Journal, 2012, 69, 906-920.	5.7	131

#	Article	IF	CITATIONS
37	Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 27124-27132.	7.1	129
38	A set of fluorescent proteinâ€based markers expressed from constitutive and arbuscular mycorrhizaâ€inducible promoters to label organelles, membranes and cytoskeletal elements in <i>Medicago truncatula</i> . Plant Journal, 2014, 80, 1151-1163.	5.7	121
39	EXO70I Is Required for Development of a Sub-domain of the Periarbuscular Membrane during Arbuscular Mycorrhizal Symbiosis. Current Biology, 2015, 25, 2189-2195.	3.9	120
40	A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition., 1997, 34, 199-208.		113
41	A Transcriptional Program for Arbuscule Degeneration during AM Symbiosis Is Regulated by MYB1. Current Biology, 2017, 27, 1206-1212.	3.9	110
42	<i>Medicago truncatula mtpt4</i> mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant Journal, 2011, 68, 954-965.	5.7	103
43	Signaling events during initiation of arbuscular mycorrhizal symbiosis. Journal of Integrative Plant Biology, 2014, 56, 250-261.	8.5	102
44	Hyphal branching during arbuscule development requires RAM1. Plant Physiology, 2015, 169, pp.01155.2015.	4.8	94
45	Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME Journal, 2021, 15, 2276-2288.	9.8	91
46	Genome and evolution of the arbuscular mycorrhizal fungus <i>Diversispora epigaea</i> (formerly) Tj ETQq0 0 C	rgBT /Ove 7.3	erlock 10 Tf 5
47	Closely Related Members of the Medicago truncatula PHT1 Phosphate Transporter Gene Family Encode Phosphate Transporters with Distinct Biochemical Activities. Journal of Biological Chemistry, 2008, 283, 24673-24681.	3.4	87
48	Diversity of morphology and function in arbuscular mycorrhizal symbioses in Brachypodium distachyon. Planta, 2012, 236, 851-865.	3.2	85
49	Extensive membrane systems at the host–arbuscular mycorrhizal fungus interface. Nature Plants, 2019, 5, 194-203.	9.3	85
50	Biotrophic interfaces and nutrient transport in plant/fungal symbioses. Journal of Experimental Botany, 1999, 50, 1013-1022.	4.8	84
51	Novel Genes Induced During an Arbuscular Mycorrhizal (AM) Symbiosis Formed Between Medicago truncatula and Glomus versiforme. Molecular Plant-Microbe Interactions, 1999, 12, 171-181.	2.6	78
52	Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Protoplasma, 2001, 217, 154-165.	2.1	76
53	Defensin gene family in Medicago truncatula: structure, expression and induction by signal molecules. Plant Molecular Biology, 2005, 58, 385-399.	3.9	73
54	Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2019, 50, 132-139.	7.1	70

#	Article	IF	Citations
55	Blumenols as shoot markers of root symbiosis with arbuscular mycorrhizal fungi. ELife, 2018, 7, .	6.0	69
56	A CLE–SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. Nature Plants, 2019, 5, 933-939.	9.3	65
57	Diverse <scp><i>Sorghum bicolor</i></scp> accessions show marked variation in growth and transcriptional responses to arbuscular mycorrhizal fungi. Plant, Cell and Environment, 2019, 42, 1758-1774.	5.7	60
58	Development of the arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 1998, 1, 360-365.	7.1	59
59	Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza. Fungal Biology, 2011, 115, 1197-1209.	2.5	58
60	Exocytosis for endosymbiosis: membrane trafficking pathways for development of symbiotic membrane compartments. Current Opinion in Plant Biology, 2017, 38, 101-108.	7.1	54
61	Expression of a xyloglucan endotransglucosylase/hydrolase gene, Mt-XTH1, from Medicago truncatula is induced systemically in mycorrhizal roots. Gene, 2005, 345, 191-197.	2.2	53
62	A phosphate transporter from Medicago truncatula is expressed in the photosynthetic tissues of the plant and located in the chloroplast envelope. New Phytologist, 2003, 157, 291-302.	7.3	46
63	Characterization of the Mt4 gene from Medicago truncatula. Gene, 1998, 216, 47-53.	2.2	45
64	Laser microdissection and its application to analyze gene expression in arbuscular mycorrhizal symbiosis. Pest Management Science, 2009, 65, 504-511.	3.4	45
65	cDNA arrays as a tool to identify mycorrhiza-regulated genes: identification of mycorrhiza-induced genes that encode or generate signaling molecules implicated in the control of root growth. Canadian Journal of Botany, 2004, 82, 1177-1185.	1.1	32
66	Construction and characterization of genomic libraries of two endomycorrhizal fungi: Glomus versiforme and Gigaspora margarita. Mycological Research, 1999, 103, 955-960.	2.5	29
67	Fifteen compelling open questions in plant cell biology. Plant Cell, 2022, 34, 72-102.	6.6	27
68	Accumulation of phosphoinositides in distinct regions of the periarbuscular membrane. New Phytologist, 2019, 221, 2213-2227.	7.3	24
69	DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in <i>Medicago truncatula</i> . Plant Signaling and Behavior, 2016, 11, e1162369.	2.4	23
70	Novel plant and fungal AGP-like proteins in the Medicago truncatula–Glomus intraradices arbuscular mycorrhizal symbiosis. Mycorrhiza, 2008, 18, 403-412.	2.8	17
71	A short LysM protein with high molecular diversity from an arbuscular mycorrhizal fungus, Rhizophagus irregularis. Mycoscience, 2019, 60, 63-70.	0.8	15
72	The Arbuscular Mycorrhizal Symbiosis. , 1997, , 1-34.		14

#	Article	IF	CITATIONS
73	Genetic variation for root architecture, nutrient uptake and mycorrhizal colonisation in Medicago truncatula accessions. Plant and Soil, 2010, 336, 113-128.	3.7	13
74	RiArsB and RiMT-11: Two novel genes induced by arsenate in arbuscular mycorrhiza. Fungal Biology, 2018, 122, 121-130.	2.5	13
75	Phosphate Transporters in Arbuscular Mycorrhizal Symbiosis. , 2010, , 117-135.		12
76	A Phosphate-Dependent Requirement for Transcription Factors IPD3 and IPD3L During Arbuscular Mycorrhizal Symbiosis in <i>Medicago truncatula</i> . Molecular Plant-Microbe Interactions, 2019, 32, 1277-1290.	2.6	11
77	Constitutive Overexpression of RAM1 Leads to an Increase in Arbuscule Density in Brachypodium distachyon. Plant Physiology, 2020, 184, 1263-1272.	4.8	11
78	Gene Silencing in Medicago truncatula Roots Using RNAi. Methods in Molecular Biology, 2013, 1069, 163-177.	0.9	10
79	<scp><i>KIN3</i></scp> impacts arbuscular mycorrhizal symbiosis and promotes fungal colonisation in <i>Medicago truncatula</i> . Plant Journal, 2022, 110, 513-528.	5.7	9
80	A genetically encoded biosensor reveals spatiotemporal variation in cellular phosphate content in <i>Brachypodium distachyon</i> mycorrhizal roots. New Phytologist, 2022, 234, 1817-1831.	7.3	4