
Michael A Marletta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1780233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ceragenins and Antimicrobial Peptides Kill Bacteria through Distinct Mechanisms. MBio, 2022, 13, e0272621.	1.8	18
2	Nitric oxide signaling controls collective contractions in a colonial choanoflagellate. Current Biology, 2022, 32, 2539-2547.e5.	1.8	8
3	Ratiometric Oxygen Sensing with H-NOX Protein Conjugates. Inorganic Chemistry, 2022, 61, 10521-10532.	1.9	3
4	Structural Perspectives on the Mechanism of Soluble Guanylate Cyclase Activation. International Journal of Molecular Sciences, 2021, 22, 5439.	1.8	20
5	Revisiting Nitric Oxide Signaling: Where Was It, and Where Is It Going?. Biochemistry, 2021, 60, 3491-3496.	1.2	11
6	Corrole-Substituted Fluorescent Heme Proteins. Inorganic Chemistry, 2021, 60, 2716-2729.	1.9	17
7	Designer Heme Proteins: Achieving Novel Function with Abiological Heme Analogues. Accounts of Chemical Research, 2021, 54, 4565-4575.	7.6	20
8	An iron (II) dependent oxygenase performs the last missing step of plant lysine catabolism. Nature Communications, 2020, 11, 2931.	5.8	11
9	Glycosidic Bond Oxidation: The Structure, Function, and Mechanism of Polysaccharide Monooxygenases. , 2020, , 298-331.		9
10	Allorecognition upon Fungal Cell-Cell Contact Determines Social Cooperation and Impacts the Acquisition of Multicellularity. Current Biology, 2019, 29, 3006-3017.e3.	1.8	47
11	Substrate selectivity in starch polysaccharide monooxygenases. Journal of Biological Chemistry, 2019, 294, 12157-12166.	1.6	31
12	Glycosidic Bond Hydroxylation by Polysaccharide Monooxygenases. Trends in Chemistry, 2019, 1, 198-209.	4.4	32
13	Characterization of a Carbon Monoxide-Activated Soluble Guanylate Cyclase fromChlamydomonas reinhardtii. Biochemistry, 2019, 58, 2250-2259.	1.2	11
14	Structural Insight into Hâ€NOX Gas Sensing and Cognate Signaling Protein Regulation. ChemBioChem, 2019, 20, 7-19.	1.3	19
15	Allosteric activation of the nitric oxide receptor soluble guanylate cyclase mapped by cryo-electron microscopy. ELife, 2019, 8, .	2.8	66
16	Comparative and integrative metabolomics reveal that S-nitrosation inhibits physiologically relevant metabolic enzymes. Journal of Biological Chemistry, 2018, 293, 6282-6296.	1.6	14
17	Mapping the H-NOX/HK Binding Interface in <i>Vibrio cholerae</i> by Hydrogen/Deuterium Exchange Mass Spectrometry. Biochemistry, 2018, 57, 1779-1789.	1.2	11
18	A Random-Sequential Kinetic Mechanism for Polysaccharide Monooxygenases. Biochemistry, 2018, 57, 3191-3199.	1.2	29

#	Article	IF	CITATIONS
19	Reactivity of O ₂ versus H ₂ O ₂ with polysaccharide monooxygenases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4915-4920.	3.3	144
20	Physiological activation and deactivation of soluble guanylate cyclase. Nitric Oxide - Biology and Chemistry, 2018, 77, 65-74.	1.2	72
21	A Dual-H-NOX Signaling System in <i>Saccharophagus degradans</i> . Biochemistry, 2018, 57, 6570-6580.	1.2	5
22	Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins. ACS Chemical Biology, 2018, 13, 1631-1639.	1.6	8
23	The Role of the Secondary Coordination Sphere in a Fungal Polysaccharide Monooxygenase. ACS Chemical Biology, 2017, 12, 1095-1103.	1.6	89
24	Nitric Oxide-Induced Conformational Changes Govern H-NOX and Histidine Kinase Interaction and Regulation in <i>Shewanella oneidensis</i> . Biochemistry, 2017, 56, 1274-1284.	1.2	22
25	Regulation of nitric oxide signaling by formation of a distal receptor–ligand complex. Nature Chemical Biology, 2017, 13, 1216-1221.	3.9	23
26	Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	63
27	Starch-degrading polysaccharide monooxygenases. Cellular and Molecular Life Sciences, 2016, 73, 2809-2819.	2.4	33
28	Structural and Functional Evidence Indicates Selective Oxygen Signaling in <i>Caldanaerobacter subterraneus</i> H-NOX. ACS Chemical Biology, 2016, 11, 2337-2346.	1.6	36
29	Chemoproteomic Strategy to Quantitatively Monitor Transnitrosation Uncovers Functionally Relevant S -Nitrosation Sites on Cathepsin D and HADH2. Cell Chemical Biology, 2016, 23, 727-737.	2.5	41
30	Nitric Oxide Mediates Biofilm Formation and Symbiosis in <i>Silicibacter</i> sp. Strain TrichCH4B. MBio, 2015, 6, e00206-15.	1.8	32
31	The Influence of Nitric Oxide on Soluble Guanylate Cyclase Regulation by Nucleotides. Journal of Biological Chemistry, 2015, 290, 15570-15580.	1.6	13
32	Cellulose Degradation by Polysaccharide Monooxygenases. Annual Review of Biochemistry, 2015, 84, 923-946.	5.0	246
33	The framework of polysaccharide monooxygenase structure and chemistry. Current Opinion in Structural Biology, 2015, 35, 93-99.	2.6	65
34	Single-particle EM reveals the higher-order domain architecture of soluble guanylate cyclase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2960-2965.	3.3	57
35	Nitric Oxide-Induced Conformational Changes in Soluble Guanylate Cyclase. Structure, 2014, 22, 602-611.	1.6	68
36	Molecular architecture of mammalian nitric oxide synthases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3614-23.	3.3	91

#	Article	lF	CITATIONS
37	Structural insights into the role of iron–histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4156-64.	3.3	87
38	Determinants of Regioselective Hydroxylation in the Fungal Polysaccharide Monooxygenases. Journal of the American Chemical Society, 2014, 136, 562-565.	6.6	198
39	A family of starch-active polysaccharide monooxygenases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13822-13827.	3.3	222
40	Direct <i>meso</i> â€Alkynylation of Metalloporphyrins Through Gold Catalysis for Hemoprotein Engineering. Angewandte Chemie - International Edition, 2014, 53, 2611-2614.	7.2	31
41	Toward â€~Omic Scale Metabolite Profiling: A Dual Separation–Mass Spectrometry Approach for Coverage of Lipid and Central Carbon Metabolism. Analytical Chemistry, 2013, 85, 6876-6884.	3.2	242
42	Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior. Trends in Biochemical Sciences, 2013, 38, 566-575.	3.7	96
43	Phosphorylation-dependent derepression by the response regulator HnoC in the <i>Shewanella oneidensis</i> nitric oxide signaling network. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4648-57.	3.3	24
44	An Escherichia coli Expression-Based Approach for Porphyrin Substitution in Heme Proteins. Methods in Molecular Biology, 2013, 987, 95-106.	0.4	8
45	Porphyrin π-stacking in a heme protein scaffold tunes gas ligand affinity. Journal of Inorganic Biochemistry, 2013, 127, 7-12.	1.5	14
46	Porphyrin-Substituted H-NOX Proteins as High-Relaxivity MRI Contrast Agents. Inorganic Chemistry, 2013, 52, 2277-2279.	1.9	38
47	Higher-order interactions bridge the nitric oxide receptor and catalytic domains of soluble guanylate cyclase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6777-6782.	3.3	54
48	Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Current Opinion in Chemical Biology, 2012, 16, 498-506.	2.8	228
49	Conformationally Distinct Five-Coordinate Heme–NO Complexes of Soluble Guanylate Cyclase Elucidated by Multifrequency Electron Paramagnetic Resonance (EPR). Biochemistry, 2012, 51, 8384-8390.	1.2	14
50	Nitric Oxide Modulates Bacterial Biofilm Formation through a Multicomponent Cyclic-di-GMP Signaling Network. Molecular Cell, 2012, 46, 449-460.	4.5	156
51	Heme-assisted S-Nitrosation Desensitizes Ferric Soluble Guanylate Cyclase to Nitric Oxide. Journal of Biological Chemistry, 2012, 287, 43053-43062.	1.6	57
52	Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases. Journal of the American Chemical Society, 2012, 134, 890-892.	6.6	412
53	Insight into the Rescue of Oxidized Soluble Guanylate Cyclase by the Activator Cinaciguat. ChemBioChem, 2012, 13, 977-981.	1.3	28
54	Structure and Regulation of Soluble Guanylate Cyclase. Annual Review of Biochemistry, 2012, 81, 533-559.	5.0	388

#	Article	IF	CITATIONS
55	Structural Basis for Substrate Targeting and Catalysis by Fungal Polysaccharide Monooxygenases. Structure, 2012, 20, 1051-1061.	1.6	257
56	Controlling Conformational Flexibility of an O ₂ -Binding H-NOX Domain. Biochemistry, 2011, 50, 6832-6840.	1.2	17
57	Probing Domain Interactions in Soluble Guanylate Cyclase. Biochemistry, 2011, 50, 4281-4290.	1.2	15
58	Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by <i>Neurospora crassa</i> . ACS Chemical Biology, 2011, 6, 1399-1406.	1.6	568
59	Quantitative Proteomic Approach for Cellulose Degradation by <i>Neurospora crassa</i> . Journal of Proteome Research, 2011, 10, 4177-4185.	1.8	99
60	Determinants of the Heme–CO Vibrational Modes in the H-NOX Family. Biochemistry, 2011, 50, 6519-6530.	1.2	10
61	Tunnels modulate ligand flux in a heme nitric oxide/oxygen binding (H-NOX) domain. Proceedings of the United States of America, 2011, 108, E881-9.	3.3	55
62	Modulating Heme Redox Potential through Protein-Induced Porphyrin Distortion. Journal of the American Chemical Society, 2010, 132, 12794-12795.	6.6	93
63	From metals to radicals to light to loops: regulating complex reactions. Current Opinion in Structural Biology, 2010, 20, 657-658.	2.6	0
64	Determinants of Ligand Affinity and Heme Reactivity in Hâ€NOX Domains. Angewandte Chemie - International Edition, 2010, 49, 720-723.	7.2	33
65	Use of a semisynthetic epitope to probe histidine kinase activity and regulation. Analytical Biochemistry, 2010, 397, 139-143.	1.1	28
66	Structural insights into the molecular mechanism of Hâ€NOX activation. Protein Science, 2010, 19, 881-887.	3.1	36
67	Hâ€NOX regulation of câ€diâ€GMP metabolism and biofilm formation in <i>Legionella pneumophila</i> . Molecular Microbiology, 2010, 77, 930-942.	1.2	108
68	Incorporation of Tyrosine and Glutamine Residues into the Soluble Guanylate Cyclase Heme Distal Pocket Alters NO and O2 Binding. Journal of Biological Chemistry, 2010, 285, 17471-17478.	1.6	17
69	H-NOX–mediated nitric oxide sensing modulates symbiotic colonization by <i>Vibrio fischeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8375-8380.	3.3	100
70	Ru-Porphyrin Protein Scaffolds for Sensing O ₂ . Journal of the American Chemical Society, 2010, 132, 5582-5583.	6.6	57
71	Soluble Guanylate Cyclase Is Activated Differently by Excess NO and by YC-1: Resonance Raman Spectroscopic Evidence. Biochemistry, 2010, 49, 4864-4871.	1.2	23
72	Probing Soluble Guanylate Cyclase Activation by CO and YC-1 Using Resonance Raman Spectroscopy. Biochemistry, 2010, 49, 3815-3823.	1.2	27

#	Article	IF	CITATIONS
73	NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from <i>Sorangium cellulosum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16221-16226.	3.3	59
74	A structural basis for H-NOX signaling in <i>Shewanella oneidensis</i> by trapping a histidine kinase inhibitory conformation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19753-19760.	3.3	70
75	A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21602-21607.	3.3	125
76	4,4-Difluorinated analogues of l-arginine and NG-hydroxy-l-arginine as mechanistic probes for nitric oxide synthase. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1758-1762.	1.0	10
77	Resonance Raman Spectra of an O ₂ -Binding H-NOX Domain Reveal Heme Relaxation upon Mutation. Biochemistry, 2009, 48, 8568-8577.	1.2	28
78	Neurons Detect Increases and Decreases in Oxygen Levels Using Distinct Guanylate Cyclases. Neuron, 2009, 61, 865-879.	3.8	253
79	Biochemistry of Soluble Guanylate Cyclase. Handbook of Experimental Pharmacology, 2009, , 17-31.	0.9	106
80	Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22157-22162.	3.3	310
81	Nucleotide Regulation of Soluble Guanylate Cyclase Substrate Specificity. Biochemistry, 2009, 48, 7519-7524.	1.2	37
82	The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase. BMC Structural Biology, 2008, 8, 42.	2.3	97
83	Probing the Function of Heme Distortion in the H-NOX Family. ACS Chemical Biology, 2008, 3, 703-710.	1.6	108
84	Spectroscopic and kinetic studies of Nor1, a cytochrome P450 nitric oxide reductase from the fungal pathogen Histoplasma capsulatum. Archives of Biochemistry and Biophysics, 2008, 480, 132-137.	1.4	18
85	Characterization of Two Different Five-Coordinate Soluble Guanylate Cyclase Ferrous–Nitrosyl Complexes. Biochemistry, 2008, 47, 3892-3899.	1.2	33
86	Dissociation of Nitric Oxide from Soluble Guanylate Cyclase and Heme-Nitric Oxide/Oxygen Binding Domain Constructs. Journal of Biological Chemistry, 2007, 282, 897-907.	1.6	50
87	Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11609-11614.	3.3	143
88	Butyl Isocyanide as a Probe of the Activation Mechanism of Soluble Guanylate Cyclase. Journal of Biological Chemistry, 2007, 282, 35741-35748.	1.6	28
89	<i>Shewanella oneidensis</i> MR-1 H-NOX Regulation of a Histidine Kinase by Nitric Oxide. Biochemistry, 2007, 46, 13677-13683.	1.2	83
90	Effects of S-nitrosation of nitric oxide synthase. Advances in Experimental Biology, 2007, 1, 151-456.	0.1	4

#	Article	IF	CITATIONS
91	Ligand Binding and Inhibition of an Oxygen-Sensitive Soluble Guanylate Cyclase, Gyc-88E, from <i>Drosophila</i> . Biochemistry, 2007, 46, 15115-15122.	1.2	29
92	Synthesis and evaluation of a phosphonate analogue of the soluble guanylate cyclase activator YC-1. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4938-4941.	1.0	7
93	An Escherichia coli expression–based method for heme substitution. Nature Methods, 2007, 4, 43-45.	9.0	64
94	Raising Enzymes from the Dead and the Secrets They Can Tell. ACS Chemical Biology, 2006, 1, 73-74.	1.6	12
95	Sensitive and Selective Detection of Nitric Oxide Using an Hâ^'NOX Domain. Journal of the American Chemical Society, 2006, 128, 10022-10023.	6.6	39
96	The design and synthesis of YC-1 analogues as probes for soluble guanylate cyclase. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 618-621.	1.0	22
97	Nitric oxide signaling: no longer simply on or off. Trends in Biochemical Sciences, 2006, 31, 231-239.	3.7	205
98	Subcellular Targeting and Differential S-Nitrosylation of Endothelial Nitric-oxide Synthase. Journal of Biological Chemistry, 2006, 281, 151-157.	1.6	103
99	Nitric Oxide Binding to Prokaryotic Homologs of the Soluble Guanylate Cyclase β1 H-NOX Domain. Journal of Biological Chemistry, 2006, 281, 21892-21902.	1.6	66
100	Ligand specificity of H-NOX domains: from sGC to bacterial NO sensors. Journal of Inorganic Biochemistry, 2005, 99, 892-902.	1.5	108
101	Ligand discrimination in soluble guanylate cyclase and the H-NOX family of heme sensor proteins. Current Opinion in Chemical Biology, 2005, 9, 441-446.	2.8	96
102	A molecular basis for NO selectivity in soluble guanylate cyclase. Nature Chemical Biology, 2005, 1, 53-59.	3.9	177
103	Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. , 2005, 1, 154-158.		258
104	l-Arginine analogs as alternate substrates for nitric oxide synthase. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3934-3941.	1.0	20
105	Tonic and acute nitric oxide signaling through soluble guanylate cyclase is mediated by nonheme nitric oxide, ATP, and GTP. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13064-13069.	3.3	140
106	S-Nitrosation and Regulation of Inducible Nitric Oxide Synthaseâ€. Biochemistry, 2005, 44, 4636-4647.	1.2	69
107	Characterization of Nitrosoalkane Binding and Activation of Soluble Guanylate Cyclaseâ€. Biochemistry, 2005, 44, 16257-16265.	1.2	18
108	Characterization of Functional Heme Domains from Soluble Guanylate Cyclaseâ€. Biochemistry, 2005, 44, 16266-16274.	1.2	70

#	Article	IF	CITATIONS
109	Expression and Characterization of the Catalytic Domains of Soluble Guanylate Cyclase: Interaction with the Heme Domainâ€. Biochemistry, 2005, 44, 4083-4090.	1.2	83
110	Crystal structure of an oxygen-binding heme domain related to soluble guanylate cyclases. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12854-12859.	3.3	265
111	Spectroscopic Characterization of the Soluble Guanylate Cyclase-like Heme Domains fromVibrio choleraeandThermoanaerobacter tengcongensisâ€. Biochemistry, 2004, 43, 10203-10211.	1.2	176
112	Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature, 2004, 430, 317-322.	13.7	529
113	Ability of Tetrahydrobiopterin Analogues to Support Catalysis by Inducible Nitric Oxide Synthase:Â Formation of a Pterin Radical Is Required for Enzyme Activityâ€. Biochemistry, 2003, 42, 13287-13303.	1.2	53
114	Trace Elements and Nitric Oxide function. Journal of Nutrition, 2003, 133, 1431S-1433S.	1.3	17
115	Revisiting the kinetics of nitric oxide (NO) binding to soluble guanylate cyclase: The simple NO-binding model is incorrect. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12097-12101.	3.3	128
116	Reactions Catalyzed by the Heme Domain of Inducible Nitric Oxide Synthase:Â Evidence for the Involvement of Tetrahydrobiopterin in Electron Transferâ€. Biochemistry, 2002, 41, 3439-3456.	1.2	75
117	The case of CO signaling: why the jury is still out. Journal of Clinical Investigation, 2001, 107, 1071-1073.	3.9	49
118	Interaction of Soluble Guanylate Cyclase with YC-1:  Kinetic and Resonance Raman Studies. Biochemistry, 2000, 39, 4191-4198.	1.2	95
119	Inhibition of Soluble Guanylate Cyclase by ODQ. Biochemistry, 2000, 39, 10848-10854.	1.2	208
120	A new decoration for nitric oxide synthase $\hat{a} \in \hat{a}$ a Zn(Cys)4 site. Structure, 1999, 7, R73-R79.	1.6	25
121	Guanylate cyclase and the â‹NO/cGMP signaling pathway. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1411, 334-350.	0.5	859
122	Cellular Applications of a Sensitive and Selective Fiber-Optic Nitric Oxide Biosensor Based on a Dye-Labeled Heme Domain of Soluble Guanylate Cyclase. Analytical Chemistry, 1999, 71, 2071-2075.	3.2	73
123	Structural Dynamics in the Guanylate Cyclase Heme Pocket after CO Photolysis. Journal of the American Chemical Society, 1999, 121, 7397-7400.	6.6	11
124	Formation of a Pterin Radical in the Reaction of the Heme Domain of Inducible Nitric Oxide Synthase with Oxygenâ€. Biochemistry, 1999, 38, 15689-15696.	1.2	229
125	Spectroscopic Characterization of the Heme-Binding Sites in Plasmodium falciparum Histidine-Rich Protein 2. Biochemistry, 1999, 38, 16916-16924.	1.2	70
126	Synergistic activation of soluble guanylate cyclase by YC-1 and carbon monoxide: implications for the role of cleavage of the iron-histidine bond during activation by nitric oxide. Chemistry and Biology, 1998, 5, 255-261.	6.2	119

#	Article	IF	CITATIONS
127	Catalysis by nitric oxide synthase. Current Opinion in Chemical Biology, 1998, 2, 656-663.	2.8	221
128	Reactions Catalyzed by Tetrahydrobiopterin-Free Nitric Oxide Synthase. Biochemistry, 1998, 37, 15503-15512.	1.2	181
129	Regeneration of the Ferrous Heme of Soluble Guanylate Cyclase from the Nitric Oxide Complex: Acceleration by Thiols and Oxyhemoglobin. Biochemistry, 1998, 37, 16898-16907.	1.2	105
130	Structural Changes in the Heme Proximal Pocket Induced by Nitric Oxide Binding to Soluble Guanylate Cyclaseâ€. Biochemistry, 1998, 37, 12458-12464.	1.2	64
131	Resonance Raman Characterization of the Heme Domain of Soluble Guanylate Cyclaseâ€. Biochemistry, 1998, 37, 16289-16297.	1.2	48
132	Identification of Histidine 105 in the β1 Subunit of Soluble Guanylate Cyclase as the Heme Proximal Ligandâ€. Biochemistry, 1998, 37, 4502-4509.	1.2	177
133	Calcium Binding Sites of Calmodulin and Electron Transfer by Neuronal Nitric Oxide Synthaseâ€. Biochemistry, 1997, 36, 12337-12345.	1.2	35
134	Localization of the Heme Binding Region in Soluble Guanylate Cyclaseâ€. Biochemistry, 1997, 36, 15959-15964.	1.2	127
135	Spectral and Ligand-Binding Properties of an Unusual Hemoprotein, the Ferric Form of Soluble Guanylate Cyclaseâ€. Biochemistry, 1996, 35, 3258-3262.	1.2	56
136	Binding of Nitric Oxide and Carbon Monoxide to Soluble Guanylate Cyclase As Observed with Resonance Raman Spectroscopy. Biochemistry, 1996, 35, 1540-1547.	1.2	189
137	Distal Pocket Polarity in the Unusual Ligand Binding Site of Soluble Guanylate Cyclase:Â Implications for the Control of•NO Binding. Journal of the American Chemical Society, 1996, 118, 8769-8770.	6.6	58
138	Spectral and Kinetic Studies on the Activation of Soluble Guanylate Cyclase by Nitric Oxideâ€. Biochemistry, 1996, 35, 1093-1099.	1.2	320
139	Spectral Characterization and Effect on Catalytic Activity of Nitric Oxide Complexes of Inducible Nitric Oxide Synthase. Biochemistry, 1995, 34, 5627-5634.	1.2	127
140	The Ferrous Heme of Soluble Guanylate Cyclase: Formation of Hexacoordinate Complexes with Carbon Monoxide and Nitrosomethane. Biochemistry, 1995, 34, 16397-16403.	1.2	75
141	Hydrogen Peroxide-Supported Oxidation of NG-Hydroxy-L-Arginine by Nitric Oxide Synthase. Biochemistry, 1995, 34, 1930-1941.	1.2	172
142	Nitric oxide synthase: Aspects concerning structure and catalysis. Cell, 1994, 78, 927-930.	13.5	847
143	Soluble Guanylate Cyclase from Bovine Lung: Activation with Nitric Oxide and Carbon Monoxide and Spectral Characterization of the Ferrous and Ferric States. Biochemistry, 1994, 33, 5636-5640.	1.2	660
144	NG-Methyl-L-arginine functions as an alternate substrate and mechanism-based inhibitor of nitric oxide synthase. Biochemistry, 1993, 32, 9677-9685.	1.2	189

#	Article	IF	CITATIONS
145	Mechanistic probes of N-hydroxylation of L-arginine by the inducible nitric oxide synthase from murine macrophages. Biochemistry, 1992, 31, 6822-6828.	1.2	95
146	Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry, 1992, 31, 6627-6631.	1.2	660
147	Inactivation of macrophage nitric oxide synthase activity by NG-Methyl-L-arginine. Biochemical and Biophysical Research Communications, 1991, 177, 828-833.	1.0	113
148	Nitric oxide: biosynthesis and biological significance. Trends in Biochemical Sciences, 1989, 14, 488-492.	3.7	366
149	Mammalian synthesis of nitrite, nitrate, nitric oxide, and N-nitrosating agents. Chemical Research in Toxicology, 1988, 1, 249-257.	1.7	238
150	Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry, 1988, 27, 8706-8711.	1.2	1,597
151	Carbon-13 nuclear magnetic resonance studies of creatine, creatinine and some of their analogs. Magnetic Resonance in Chemistry, 1980, 13, 79-88.	0.7	22
152	Corrole–protein interactions in H-NOX and HasA. RSC Chemical Biology, 0, , .	2.0	2