Lihong Geng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/177857/publications.pdf

Version: 2024-02-01

623734 713466 22 815 14 21 h-index citations g-index papers 22 22 22 1128 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Structure and morphology of thermoplastic polyamide 6 elastomers with different soft segment content and their foaming behavior using supercritical <scp>CO₂</scp> . Polymer Engineering and Science, 2022, 62, 103-115.	3.1	5
2	Supercritical Fluids-Assisted Processing Using CO2 Foaming to Enhance the Dispersion of Nanofillers in Poly(butylene succinate)-Based Nanocomposites and the Conductivity. Journal of Polymers and the Environment, 2022, 30, 3063-3077.	5.0	4
3	Constructing acid-resistant chitosan/cellulose nanofibrils composite membrane for the adsorption of methylene blue. Journal of Environmental Chemical Engineering, 2022, 10, 107754.	6.7	21
4	Highly strong and sensitive bilayer hydrogel actuators enhanced by cross-oriented nanocellulose networks. Composites Science and Technology, 2022, 225, 109494.	7.8	16
5	Highly Strong and Conductive Carbon Fibers Originated from Bioinspired Lignin/Nanocellulose Precursors Obtained by Flow-Assisted Alignment and In Situ Interfacial Complexation. ACS Sustainable Chemistry and Engineering, 2021, 9, 2591-2599.	6.7	24
6	The effect of polytetrafluoroethylene particle size on the properties of biodegradable poly(butylene) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5
7	Muscle-inspired double-network hydrogels with robust mechanical property, biocompatibility and ionic conductivity. Carbohydrate Polymers, 2021, 262, 117936.	10.2	43
8	Sequentially Bridged Graphene Sheets for Highâ€Performance Anticorrosion. Advanced Materials Interfaces, 2021, 8, 2100452.	3.7	8
9	Interfacial polyelectrolyte complexation spinning of graphene/cellulose nanofibrils for fiber-shaped electrodes. Journal of Materials Research, 2020, 35, 122-131.	2.6	8
10	Fibrous form-stable phase change materials with high thermal conductivity fabricated by interfacial polyelectrolyte complex spinning. Carbohydrate Polymers, 2020, 249, 116836.	10.2	30
11	Hierarchical Assembly of Nanocellulose into Filaments by Flow-Assisted Alignment and Interfacial Complexation: Conquering the Conflicts between Strength and Toughness. ACS Applied Materials & Amp; Interfaces, 2020, 12, 32090-32098.	8.0	29
12	Superior strength and toughness of graphene/chitosan fibers reinforced by interfacial complexation. Composites Science and Technology, 2020, 194, 108174.	7.8	21
13	Structural characterization of carboxyl cellulose nanofibers extracted from underutilized sources. Science China Technological Sciences, 2019, 62, 971-981.	4.0	18
14	Lead removal from water using carboxycellulose nanofibers prepared by nitro-oxidation method. Cellulose, 2018, 25, 1961-1973.	4.9	69
15	Understanding the Mechanistic Behavior of Highly Charged Cellulose Nanofibers in Aqueous Systems. Macromolecules, 2018, 51, 1498-1506.	4.8	92
16	Nanocellulose from Spinifex as an Effective Adsorbent to Remove Cadmium(II) from Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 3279-3290.	6.7	138
17	Characterization of Nanocellulose Using Small-Angle Neutron, X-ray, and Dynamic Light Scattering Techniques. Journal of Physical Chemistry B, 2017, 121, 1340-1351.	2.6	112
18	Superior Impact Toughness and Excellent Storage Modulus of Poly(lactic acid) Foams Reinforced by Shish-Kebab Nanoporous Structure. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21071-21076.	8.0	69

#	Article	lF	CITATIONS
19	Rheological Properties of Jute-Based Cellulose Nanofibers under Different Ionic Conditions. ACS Symposium Series, 2017, , 113-132.	0.5	8
20	Strength and modulus improvement of wet-spun cellulose I filaments by sequential physical and chemical cross-linking. Materials and Design, 2017, 136, 45-53.	7.0	33
21	Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength. Cellulose, 2017, 24, 5417-5429.	4.9	59
22	Interfacial Polyelectrolyte Complexation Spinning of Cellulose Nanofibers/CdTe Quantum Dots for Anti-counterfeiting Fluorescent Textiles. Fibers and Polymers, 0 , 1 .	2.1	1