## Xing Wang Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1777324/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature, 2000, 405, 462-466.                                                                                                                                    | 27.8 | 1,227     |
| 2  | Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics, 2007, 8, 217-230.                                                                                                                                             | 16.3 | 892       |
| 3  | Analysis of Transcription Factor HY5 Genomic Binding Sites Revealed Its Hierarchical Role in Light<br>Regulation of Development. Plant Cell, 2007, 19, 731-749.                                                                                   | 6.6  | 829       |
| 4  | The photomorphogenic repressors COP1 and DET1: 20 years later. Trends in Plant Science, 2012, 17, 584-593.                                                                                                                                        | 8.8  | 530       |
| 5  | Light Control of Arabidopsis Development Entails Coordinated Regulation of Genome Expression and<br>Cellular Pathways. Plant Cell, 2001, 13, 2589-2607.                                                                                           | 6.6  | 498       |
| 6  | Direct Interaction of Arabidopsis Cryptochromes with COP1 in Light Control Development. Science, 2001, 294, 154-158.                                                                                                                              | 12.6 | 473       |
| 7  | The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity.<br>Genes and Development, 2003, 17, 2642-2647.                                                                                            | 5.9  | 403       |
| 8  | <i>Arabidopsis</i> noncoding RNA mediates control of photomorphogenesis by red light. Proceedings<br>of the National Academy of Sciences of the United States of America, 2014, 111, 10359-10364.                                                 | 7.1  | 317       |
| 9  | COP1 – from plant photomorphogenesis to mammalian tumorigenesis. Trends in Cell Biology, 2005, 15,<br>618-625.                                                                                                                                    | 7.9  | 302       |
| 10 | Genome-Wide Analysis of DNA Methylation and Gene Expression Changes in Two <i>Arabidopsis</i> Ecotypes and Their Reciprocal Hybrids. Plant Cell, 2012, 24, 875-892.                                                                               | 6.6  | 297       |
| 11 | A High-Density SNP Genotyping Array for Rice Biology and Molecular Breeding. Molecular Plant, 2014,<br>7, 541-553.                                                                                                                                | 8.3  | 251       |
| 12 | Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nature Cell<br>Biology, 2011, 13, 616-622.                                                                                                                  | 10.3 | 245       |
| 13 | From seed to seed: the role of photoreceptors in Arabidopsis development. Developmental Biology, 2003, 260, 289-297.                                                                                                                              | 2.0  | 214       |
| 14 | BBX21, an <i>Arabidopsis</i> B-box protein, directly activates <i>HY5</i> and is targeted by COP1 for 26S proteasome-mediated degradation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7655-7660. | 7.1  | 204       |
| 15 | Biochemical Characterization of <i>Arabidopsis</i> Complexes Containing CONSTITUTIVELY<br>PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA Proteins in Light Control of Plant Development.<br>Plant Cell, 2008, 20, 2307-2323.                            | 6.6  | 202       |
| 16 | Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Genes and Development, 2004, 18, 2172-2181.                                                                              | 5.9  | 186       |
| 17 | Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor<br>DDA1 in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 712-728.                                                                              | 6.6  | 186       |
| 18 | <i>Arabidopsis</i> CULLIN4-Damaged DNA Binding Protein 1 Interacts with CONSTITUTIVELY<br>PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA Complexes to Regulate Photomorphogenesis and<br>Flowering Time Â. Plant Cell, 2010, 22, 108-123.                   | 6.6  | 182       |

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Epigenome and Plant Development. Annual Review of Plant Biology, 2011, 62, 411-435.                                                                                                                                                                  | 18.7 | 172       |
| 20 | DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nature Communications, 2016, 7, 11868.                                                                                                    | 12.8 | 172       |
| 21 | <i>Arabidopsis</i> Transcription Factor ELONGATED HYPOCOTYL5 Plays a Role in the Feedback<br>Regulation of Phytochrome A Signaling Â. Plant Cell, 2010, 22, 3634-3649.                                                                                   | 6.6  | 165       |
| 22 | MicroRNA408 Is Critical for the <i>HY5-SPL7</i> Gene Network That Mediates the Coordinated Response to Light and Copper Â. Plant Cell, 2015, 26, 4933-4953.                                                                                              | 6.6  | 164       |
| 23 | A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nature Genetics, 2021, 53, 574-584.                                                                                                             | 21.4 | 164       |
| 24 | Conversion from CUL4-based COP1–SPA E3 apparatus to UVR8–COP1–SPA complexes underlies a<br>distinct biochemical function of COP1 under UV-B. Proceedings of the National Academy of Sciences<br>of the United States of America, 2013, 110, 16669-16674. | 7.1  | 163       |
| 25 | Convergence of Light and ABA Signaling on the ABI5 Promoter. PLoS Genetics, 2014, 10, e1004197.                                                                                                                                                          | 3.5  | 163       |
| 26 | ArabidopsisFHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO Journal, 2002, 21, 1339-1349.                                                                                                | 7.8  | 141       |
| 27 | Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. Current<br>Opinion in Plant Biology, 2014, 21, 96-103.                                                                                                        | 7.1  | 141       |
| 28 | HFR1 Sequesters PIF1 to Govern the Transcriptional Network Underlying Light-Initiated Seed<br>Germination in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2013, 25, 3770-3784.                                                                                  | 6.6  | 128       |
| 29 | <i>Arabidopsis</i> SAURs are critical for differential light regulation of the development of various<br>organs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113,<br>6071-6076.                               | 7.1  | 127       |
| 30 | Rare earth elements activate endocytosis in plant cells. Proceedings of the National Academy of<br>Sciences of the United States of America, 2014, 111, 12936-12941.                                                                                     | 7.1  | 120       |
| 31 | Seedlings Transduce the Depth and Mechanical Pressure of Covering Soil Using COP1 and Ethylene to Regulate EBF1/EBF2 for Soil Emergence. Current Biology, 2016, 26, 139-149.                                                                             | 3.9  | 120       |
| 32 | Genome-Wide Binding Site Analysis of FAR-RED ELONGATED HYPOCOTYL3 Reveals Its Novel Function in <i>Arabidopsis</i> Development. Plant Cell, 2011, 23, 2514-2535.                                                                                         | 6.6  | 118       |
| 33 | Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids. Genome<br>Biology, 2013, 14, R57.                                                                                                                               | 8.8  | 117       |
| 34 | The Roles of Photoreceptor Systems and the COP1-Targeted Destabilization of HY5 in Light Control of Arabidopsis Seedling Development. Plant Physiology, 2000, 124, 1520-1524.                                                                            | 4.8  | 116       |
| 35 | Arabidopsis DE-ETIOLATED1 Represses Photomorphogenesis by Positively Regulating Phytochrome-Interacting Factors in the Dark. Plant Cell, 2014, 26, 3630-3645.                                                                                            | 6.6  | 116       |
| 36 | Noncanonical role of <i>Arabidopsis</i> COP1/SPA complex in repressing BIN2-mediated PIF3 phosphorylation and degradation in darkness. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3539-3544.            | 7.1  | 109       |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | B-BOX DOMAIN PROTEIN28 Negatively Regulates Photomorphogenesis by Repressing the Activity of Transcription Factor HY5 and Undergoes COP1-Mediated Degradation. Plant Cell, 2018, 30, 2006-2019.                   | 6.6  | 105       |
| 38 | Arabidopsis COP1/SPA1 Complex and FHY1/FHY3 Associate with Distinct Phosphorylated Forms of Phytochrome A in Balancing Light Signaling. Molecular Cell, 2008, 31, 607-613.                                        | 9.7  | 104       |
| 39 | A Genome-Wide Transcription Analysis Reveals a Close Correlation of Promoter INDEL Polymorphism and Heterotic Gene Expression in Rice Hybrids. Molecular Plant, 2008, 1, 720-731.                                 | 8.3  | 101       |
| 40 | Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice.<br>Plant Science, 2012, 193-194, 8-17.                                                                        | 3.6  | 98        |
| 41 | The PP6 Phosphatase Regulates ABI5 Phosphorylation and Abscisic Acid Signaling in <i>Arabidopsis</i> Â Â.<br>Plant Cell, 2013, 25, 517-534.                                                                       | 6.6  | 98        |
| 42 | CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1. Nature Communications, 2015, 6, 7245.                                                                                     | 12.8 | 97        |
| 43 | Light-Dependent Degradation of PIF3 by SCFEBF1/2 Promotes a Photomorphogenic Response in<br>Arabidopsis. Current Biology, 2017, 27, 2420-2430.e6.                                                                 | 3.9  | 95        |
| 44 | The Photomorphogenic Central Repressor COP1: Conservation and Functional Diversification during Evolution. Plant Communications, 2020, 1, 100044.                                                                 | 7.7  | 95        |
| 45 | Ethylene Promotes Hypocotyl Growth and HY5 Degradation by Enhancing the Movement of COP1 to the<br>Nucleus in the Light. PLoS Genetics, 2013, 9, e1004025.                                                        | 3.5  | 93        |
| 46 | Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in<br>Arabidopsis hybrids. Nature Communications, 2015, 6, 7309.                                              | 12.8 | 93        |
| 47 | The Red Light Receptor Phytochrome B Directly Enhances Substrate-E3 Ligase Interactions to Attenuate<br>Ethylene Responses. Developmental Cell, 2016, 39, 597-610.                                                | 7.0  | 91        |
| 48 | Photoactivated UVR8-COP1 Module Determines Photomorphogenic UV-B Signaling Output in Arabidopsis. PLoS Genetics, 2014, 10, e1004218.                                                                              | 3.5  | 88        |
| 49 | Overexpression of the Heterotrimeric G-Protein α-Subunit Enhances Phytochrome-Mediated Inhibition of Hypocotyl Elongation in Arabidopsis. Plant Cell, 2001, 13, 1639-1652.                                        | 6.6  | 85        |
| 50 | Origin and Evolution of Core Components Responsible for Monitoring Light Environment Changes<br>during Plant Terrestrialization. Molecular Plant, 2019, 12, 847-862.                                              | 8.3  | 85        |
| 51 | A PP6-Type Phosphatase Holoenzyme Directly Regulates PIN Phosphorylation and Auxin Efflux in<br><i>Arabidopsis</i> . Plant Cell, 2012, 24, 2497-2514.                                                             | 6.6  | 84        |
| 52 | Poaceae-specific <i>MS1</i> encodes a phospholipid-binding protein for male fertility in bread wheat.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12614-12619. | 7.1  | 83        |
| 53 | PHYTOCHROME INTERACTING FACTOR1 Enhances the E3 Ligase Activity of CONSTITUTIVE<br>PHOTOMORPHOGENIC1 to Synergistically Repress Photomorphogenesis in <i>Arabidopsis</i> Â Â. Plant<br>Cell, 2014, 26, 1992-2006. | 6.6  | 78        |
| 54 | The B-Box Domain Protein BBX21 Promotes Photomorphogenesis. Plant Physiology, 2018, 176, 2365-2375.                                                                                                               | 4.8  | 78        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Transcription Factors TCP4 and PIF3 Antagonistically Regulate Organ-Specific Light Induction of<br><i>SAUR</i> Genes to Modulate Cotyledon Opening during De-Etiolation in Arabidopsis. Plant Cell,<br>2019, 31, 1155-1170. | 6.6  | 74        |
| 56 | <i>Arabidopsis</i> Phytochrome A Directly Targets Numerous Promoters for Individualized<br>Modulation of Genes in a Wide Range of Pathways. Plant Cell, 2014, 26, 1949-1966.                                                    | 6.6  | 73        |
| 57 | Genomic architecture of biomass heterosis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8101-8106.                                                        | 7.1  | 73        |
| 58 | <i>Arabidopsis</i> DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination.<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3817-3822.                     | 7.1  | 69        |
| 59 | B-Box Containing Proteins BBX30 and BBX31, Acting Downstream of HY5, Negatively Regulate<br>Photomorphogenesis in <i>Arabidopsis</i> . Plant Physiology, 2019, 180, 497-508.                                                    | 4.8  | 69        |
| 60 | Genome-wide regulation of light-controlled seedling morphogenesis by three families of<br>transcription factors. Proceedings of the National Academy of Sciences of the United States of<br>America, 2018, 115, 6482-6487.      | 7.1  | 68        |
| 61 | Salt Stress and Ethylene Antagonistically Regulate Nucleocytoplasmic Partitioning of COP1 to Control Seed Germination. Plant Physiology, 2016, 170, 2340-2350.                                                                  | 4.8  | 67        |
| 62 | COP9 signalosome: Discovery, conservation, activity, and function. Journal of Integrative Plant<br>Biology, 2020, 62, 90-103.                                                                                                   | 8.5  | 66        |
| 63 | Two E3 ligases antagonistically regulate the UV-B response in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4722-4731.                                       | 7.1  | 61        |
| 64 | Modulation of BIN2 kinase activity by HY5 controls hypocotyl elongation in the light. Nature Communications, 2020, 11, 1592.                                                                                                    | 12.8 | 61        |
| 65 | CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat.<br>Journal of Genetics and Genomics, 2020, 47, 263-272.                                                                       | 3.9  | 58        |
| 66 | The COP9 Signalosome regulates seed germination by facilitating protein degradation of RGL2 and ABI5. PLoS Genetics, 2018, 14, e1007237.                                                                                        | 3.5  | 55        |
| 67 | Arabinogalactan protein–rare earth element complexes activate plant endocytosis. Proceedings of the<br>National Academy of Sciences of the United States of America, 2019, 116, 14349-14357.                                    | 7.1  | 52        |
| 68 | HY5 regulates nitrite reductase 1 (NIR1) and ammonium transporter1;2 (AMT1;2) in Arabidopsis seedlings. Plant Science, 2015, 238, 330-339.                                                                                      | 3.6  | 49        |
| 69 | TANDEM ZINC-FINGER/PLUS3 Is a Key Component of Phytochrome A Signaling. Plant Cell, 2018, 30, 835-852.                                                                                                                          | 6.6  | 49        |
| 70 | Diurnal down-regulation of ethylene biosynthesis mediates biomass heterosis. Proceedings of the<br>National Academy of Sciences of the United States of America, 2018, 115, 5606-5611.                                          | 7.1  | 49        |
| 71 | Mammalian DET1 Regulates Cul4A Activity and Forms Stable Complexes with E2 Ubiquitin-Conjugating Enzymes. Molecular and Cellular Biology, 2007, 27, 4708-4719.                                                                  | 2.3  | 46        |
| 72 | SAUR17 and SAUR50 Differentially Regulate PP2C-D1 during Apical Hook Development and Cotyledon<br>Opening in Arabidopsis. Plant Cell, 2020, 32, 3792-3811.                                                                      | 6.6  | 46        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | BBX28/BBX29, HY5 and BBX30/31 form a feedback loop to fineâ€ŧune photomorphogenic development.<br>Plant Journal, 2020, 104, 377-390.                                                                                                                       | 5.7 | 46        |
| 74 | Divergent selection and genetic introgression shape the genome landscape of heterosis in hybrid rice.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4623-4631.                                            | 7.1 | 46        |
| 75 | Structural organization and interactions of COP1, a light-regulated developmental switch. , 1999, 41, 151-158.                                                                                                                                             |     | 43        |
| 76 | The RING-Finger E3 Ubiquitin Ligase COP1 SUPPRESSOR1 Negatively Regulates COP1 Abundance in<br>Maintaining COP1 Homeostasis in Dark-Grown <i>Arabidopsis</i> Seedlings  Â. Plant Cell, 2014, 26,<br>1981-1991.                                             | 6.6 | 41        |
| 77 | A Positive Feedback Loop of BBX11–BBX21–HY5 Promotes Photomorphogenic Development in<br>Arabidopsis. Plant Communications, 2020, 1, 100045.                                                                                                                | 7.7 | 39        |
| 78 | Pedigreeâ€based analysis of derivation of genome segments of an elite rice reveals key regions during its<br>breeding. Plant Biotechnology Journal, 2016, 14, 638-648.                                                                                     | 8.3 | 38        |
| 79 | Biological pathway expression complementation contributes to biomass heterosis in<br><i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America,<br>2021, 118, .                                                 | 7.1 | 38        |
| 80 | The Asymmetric Expression of SAUR Genes Mediated by ARF7/19 Promotes the Gravitropism and Phototropism of Plant Hypocotyls. Cell Reports, 2020, 31, 107529.                                                                                                | 6.4 | 35        |
| 81 | BBX4, a phyB-interacting and modulated regulator, directly interacts with PIF3 to fine tune red<br>light-mediated photomorphogenesis. Proceedings of the National Academy of Sciences of the United<br>States of America, 2019, 116, 26049-26056.          | 7.1 | 34        |
| 82 | A new regulator of seed size control in <i>Arabidopsis</i> identified by a genomeâ€wide association study. New Phytologist, 2019, 222, 895-906.                                                                                                            | 7.3 | 34        |
| 83 | Development of the "Third-Generation―Hybrid Rice in China. Genomics, Proteomics and<br>Bioinformatics, 2018, 16, 393-396.                                                                                                                                  | 6.9 | 33        |
| 84 | ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in <i>Arabidopsis</i> . Plant,<br>Cell and Environment, 2016, 39, 185-198.                                                                                                          | 5.7 | 32        |
| 85 | Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also<br>known as monk fruit or luo-han-guo. GigaScience, 2018, 7, .                                                                                            | 6.4 | 32        |
| 86 | COLD-REGULATED GENE27 Integrates Signals from Light and the Circadian Clock to Promote Hypocotyl<br>Growth in Arabidopsis. Plant Cell, 2020, 32, 3155-3169.                                                                                                | 6.6 | 32        |
| 87 | The telomereâ€ŧoâ€ŧelomere gapâ€free genome of four rice parents reveals <scp>SV</scp> and<br><scp>PAV</scp> patterns in hybrid rice breeding. Plant Biotechnology Journal, 2022, 20, 1642-1644.                                                           | 8.3 | 31        |
| 88 | Phytochrome B Induces Intron Retention and Translational Inhibition of PHYTOCHROME-INTERACTING FACTOR3. Plant Physiology, 2020, 182, 159-166.                                                                                                              | 4.8 | 29        |
| 89 | Light modulates the gravitropic responses through organ-specific PIFs and HY5 regulation of<br><i>LAZY4</i> expression in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the<br>United States of America, 2020, 117, 18840-18848. | 7.1 | 29        |
| 90 | From hybrid genomes to heterotic trait output: Challenges and opportunities. Current Opinion in<br>Plant Biology, 2022, 66, 102193.                                                                                                                        | 7.1 | 29        |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Arabidopsis DET1 Represses Photomorphogenesis in Part by Negatively Regulating DELLA Protein<br>Abundance in Darkness. Molecular Plant, 2015, 8, 622-630.                                                                    | 8.3  | 26        |
| 92  | <i>Arabidopsis</i> small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome<br>biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113,<br>11967-11972. | 7.1  | 26        |
| 93  | Red-light is an environmental effector for mutualism between begomovirus and its vector whitefly.<br>PLoS Pathogens, 2021, 17, e1008770.                                                                                     | 4.7  | 26        |
| 94  | Arabidopsis COP1 SUPPRESSOR 2 Represses COP1 E3 Ubiquitin Ligase Activity through Their Coiled-Coil Domains Association. PLoS Genetics, 2015, 11, e1005747.                                                                  | 3.5  | 23        |
| 95  | Phosphorylation and negative regulation of CONSTITUTIVELY PHOTOMORPHOGENIC 1 by PINOID <i>in<br/>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America,<br>2017, 114, 6617-6622. | 7.1  | 23        |
| 96  | Hinge region of <i>Arabidopsis</i> phyA plays an important role in regulating phyA function.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>E11864-E11873.                | 7.1  | 22        |
| 97  | CBF-phyB-PIF Module Links Light and Low Temperature Signaling. Trends in Plant Science, 2020, 25, 952-954.                                                                                                                   | 8.8  | 22        |
| 98  | The role of COP1 in repression of photoperiodic flowering. F1000Research, 2016, 5, 178.                                                                                                                                      | 1.6  | 22        |
| 99  | Arabidopsis Atypical Kinases ABC1K1 and ABC1K3 Act Oppositely to Cope with Photodamage Under Red<br>Light. Molecular Plant, 2015, 8, 1122-1124.                                                                              | 8.3  | 20        |
| 100 | Characterization of a Novel DWD Protein that Participates in Heat Stress Response in Arabidopsis.<br>Molecules and Cells, 2014, 37, 833-840.                                                                                 | 2.6  | 18        |
| 101 | Genome-wide dissection of heterosis for yield traits in two-line hybrid rice populations. Scientific Reports, 2017, 7, 7635.                                                                                                 | 3.3  | 18        |
| 102 | Light and Abscisic Acid Coordinately Regulate Greening of Seedlings. Plant Physiology, 2020, 183, 1281-1294.                                                                                                                 | 4.8  | 18        |
| 103 | A central circadian oscillator confers defense heterosis in hybrids without growth vigor costs.<br>Nature Communications, 2021, 12, 2317.                                                                                    | 12.8 | 18        |
| 104 | Natural variation of H3K27me3 modification in two <i>Arabidopsis</i> accessions and their hybrid.<br>Journal of Integrative Plant Biology, 2016, 58, 466-474.                                                                | 8.5  | 17        |
| 105 | The PCY-SAG14 phytocyanin module regulated by PIFs and miR408 promotes dark-induced leaf senescence in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .    | 7.1  | 17        |
| 106 | The photomorphogenic repressors BBX28 and BBX29 integrate light and brassinosteroid signaling to inhibit seedling development in Arabidopsis. Plant Cell, 2022, 34, 2266-2285.                                               | 6.6  | 17        |
| 107 | BBX11 promotes red light-mediated photomorphogenic development by modulating phyB-PIF4 signaling.<br>ABIOTECH, 2021, 2, 117-130.                                                                                             | 3.9  | 16        |
| 108 | Photoreceptor partner FHY1 has an independent role in gene modulation and plant development under far-red light. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11888-11893.    | 7.1  | 14        |

| #   | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | <i>Arabidopsis</i> PP6 phosphatases dephosphorylate PIF proteins to repress photomorphogenesis.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116,<br>20218-20225.                               | 7.1  | 14        |
| 110 | The <i>Arabidopsis</i> DREAM complex antagonizes WDR5A to modulate histone H3K4me2/3 deposition<br>for a subset of genome repression. Proceedings of the National Academy of Sciences of the United<br>States of America, 2022, 119, .       | 7.1  | 14        |
| 111 | Multiple photomorphogenic repressors work in concert to regulate Arabidopsis seedling development. Plant Signaling and Behavior, 2015, 10, e1011934.                                                                                         | 2.4  | 13        |
| 112 | Genome-wide study of an elite rice pedigree reveals a complex history of genetic architecture for breeding improvement. Scientific Reports, 2017, 7, 45685.                                                                                  | 3.3  | 13        |
| 113 | Coordinated photomorphogenic UV-B signaling network captured by mathematical modeling.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11539-11544.                                           | 7.1  | 12        |
| 114 | COP1 SUPPRESSOR 4 promotes seedling photomorphogenesis by repressing <i>CCA1</i> and <i>PIF4</i> expression in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11631-11636. | 7.1  | 12        |
| 115 | Structural insight into UV-B–activated UVR8 bound to COP1. Science Advances, 2022, 8, eabn3337.                                                                                                                                              | 10.3 | 12        |
| 116 | SWELLMAP 2, a phyB-Interacting Splicing Factor, Negatively Regulates Seedling Photomorphogenesis in Arabidopsis. Frontiers in Plant Science, 2022, 13, 836519.                                                                               | 3.6  | 11        |
| 117 | Arabidopsis atypical kinase ABC1K1 is involved in red light-mediated development. Plant Cell Reports, 2016, 35, 1213-1220.                                                                                                                   | 5.6  | 9         |
| 118 | Gibberellin Signal Transduction in Rice. Journal of Integrative Plant Biology, 2007, 49, 731-741.                                                                                                                                            | 8.5  | 8         |
| 119 | A missense mutation in WRKY32 converts its function from a positive regulator to a repressor of photomorphogenesis. New Phytologist, 2021, , .                                                                                               | 7.3  | 8         |
| 120 | Genomic insights on the contribution of introgressions from Xian/Indica to the genetic improvement of Geng/Japonica rice cultivars. Plant Communications, 2022, 3, 100325.                                                                   | 7.7  | 8         |
| 121 | Allele-specific DNA methylation analyses associated with siRNAs in Arabidopsis hybrids. Science China<br>Life Sciences, 2014, 57, 519-525.                                                                                                   | 4.9  | 7         |
| 122 | Natural variation in the transcription factor REPLUMLESS contributes to both disease resistance and plant growth in Arabidopsis. Plant Communications, 2022, 3, 100351.                                                                      | 7.7  | 4         |
| 123 | Analysis of the Transcriptional Dynamics of Regulatory Genes During Peanut Pod Development Caused by Darkness and Mechanical Stress. Frontiers in Plant Science, 2022, 13, .                                                                 | 3.6  | 3         |
| 124 | Single-Molecule Sequencing Assists Genome Assembly Improvement and Structural Variation<br>Inference. Molecular Plant, 2016, 9, 1085-1087.                                                                                                   | 8.3  | 2         |
| 125 | Organization of protein complexes under photomorphogenic UV-B inArabidopsis. Plant Signaling and Behavior, 2013, 8, e27206.                                                                                                                  | 2.4  | 1         |
| 126 | Exploring the genetic characteristics of 93-11 and Nipponbare recombination inbred lines based on the GoldenGate SNP assay. Science China Life Sciences, 2016, 59, 700-708.                                                                  | 4.9  | 0         |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Reply to Jin and Zhu: PINOID-mediated COP1 phosphorylation matters in photomorphogenesis in<br>Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2017,<br>114, E8136-E8137. | 7.1 | 0         |