Moon Gyu Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/177706/publications.pdf

Version: 2024-02-01

26 papers 3,595 citations

331670
21
h-index

26 g-index

26 all docs

 $\begin{array}{c} 26 \\ \text{docs citations} \end{array}$

times ranked

26

4906 citing authors

#	Article	IF	CITATIONS
1	Efficient and Durable Anion Exchange Membrane Water Electrolysis for a Commercially Available Electrolyzer Stack using Alkaline Electrolyte. ACS Energy Letters, 2022, 7, 2576-2583.	17.4	44
2	Enhanced electrical and mechanical properties of graphene nano-ribbon/thermoplastic polyurethane composites. Carbon, 2021, 174, 305-316.	10.3	38
3	Cubic garnet solid polymer electrolyte for room temperature operable all-solid-state-battery. Journal of Materials Research and Technology, 2021, 15, 5849-5863.	5.8	7
4	The conductivity of polydimethylsiloxane/graphene nano-ribbon foam composite with elongation. Carbon, 2020, 162, 328-338.	10.3	19
5	Hierarchical Core–Shell Nickel Cobaltite Chestnutâ€like Structures as Bifunctional Electrocatalyst for Rechargeable Metal–Air Batteries. ChemSusChem, 2018, 11, 406-414.	6.8	30
6	New Interpretation of the Performance of Nickel-Based Air Electrodes for Rechargeable Zinc–Air Batteries. Journal of Physical Chemistry C, 2018, 122, 20153-20166.	3.1	24
7	Hollow Multivoid Nanocuboids Derived from Ternary Ni–Co–Fe Prussian Blue Analog for Dualâ€Electrocatalysis of Oxygen and Hydrogen Evolution Reactions. Advanced Functional Materials, 2018, 28, 1802129.	14.9	242
8	Bifunctionally active and durable hierarchically porous transition metal-based hybrid electrocatalyst for rechargeable metal-air batteries. Applied Catalysis B: Environmental, 2018, 239, 677-687.	20.2	64
9	Heavily nitrogen-doped acetylene black as a high-performance catalyst for oxygen reduction reaction. Carbon, 2017, 117, 12-19.	10.3	29
10	Selfâ€Assembly of Spinel Nanocrystals into Mesoporous Spheres as Bifunctionally Active Oxygen Reduction and Evolution Electrocatalysts. ChemSusChem, 2017, 10, 2258-2266.	6.8	24
11	Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives. Advanced Materials, 2017, 29, 1604685.	21.0	1,143
12	Pomegranateâ€Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal–Air Batteries. Angewandte Chemie - International Edition, 2016, 55, 4977-4982.	13.8	258
13	3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc–Air Batteries. Small, 2016, 12, 2707-2714.	10.0	144
14	Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal–air batteries. Journal of Materials Chemistry A, 2016, 4, 7107-7134.	10.3	408
15	Pomegranateâ€Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal–Air Batteries. Angewandte Chemie, 2016, 128, 5061-5066.	2.0	20
16	Self-Assembled NiO/Ni(OH) ₂ Nanoflakes as Active Material for High-Power and High-Energy Hybrid Rechargeable Battery. Nano Letters, 2016, 16, 1794-1802.	9.1	222
17	Batteries: Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries (Adv. Mater.) Tj ETQq1	1 0.78431 21.0	.4 rgBT /Overl
18	Flexible Highâ€Energy Polymerâ€Electrolyteâ€Based Rechargeable Zinc–Air Batteries. Advanced Materials, 2015, 27, 5617-5622.	21.0	258

#	Article	IF	CITATIONS
19	Perovskite–Nitrogenâ€Đoped Carbon Nanotube Composite as Bifunctional Catalysts for Rechargeable Lithium–Air Batteries. ChemSusChem, 2015, 8, 1058-1065.	6.8	92
20	Design of Highly Active Perovskite Oxides for Oxygen Evolution Reaction by Combining Experimental and ab Initio Studies. ACS Catalysis, 2015, 5, 4337-4344.	11.2	107
21	Highly active Co-doped LaMnO 3 perovskite oxide and N-doped carbon nanotube hybrid bi-functional catalyst for rechargeable zinc–air batteries. Electrochemistry Communications, 2015, 60, 38-41.	4.7	86
22	Highly Active and Durable Nanocrystalâ€Decorated Bifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries. ChemSusChem, 2015, 8, 3129-3138.	6.8	57
23	Synergistic Bifunctional Catalyst Design based on Perovskite Oxide Nanoparticles and Intertwined Carbon Nanotubes for Rechargeable Zinc–Air Battery Applications. ACS Applied Materials & Interfaces, 2015, 7, 902-910.	8.0	176
24	Hydrogen sulfide adsorption on nano-sized zinc oxide/reduced graphite oxide composite at ambient condition. Applied Surface Science, 2013, 276, 646-652.	6.1	71
25	Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature. Applied Surface Science, 2013, 280, 360-365.	6.1	28
26	Effect of Reduced Graphite Oxide as Substrate for Zinc Oxide to Hydrogen Sulfide Adsorption. Clean Technology, 2013, 19, 300-305.	0.1	3