Thomas E Sharp Iii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1776294/publications.pdf Version: 2024-02-01

ΤΗΟΜΛς Ε SHADD III

#	Article	IF	CITATIONS
1	Mitochondrial H ₂ S Regulates BCAA Catabolism in Heart Failure. Circulation Research, 2022, 131, 222-235.	4.5	31
2	Renal Denervation to Treat Heart Failure. Annual Review of Physiology, 2021, 83, 39-58.	13.1	28
3	Novel Göttingen Miniswine Model of HeartÂFailure With Preserved EjectionÂFraction Integrating MultipleÂComorbidities. JACC Basic To Translational Science, 2021, 6, 154-170.	4.1	24
4	Endothelial Cell Cystathionine Î³â€Łyase Expression Level Modulates Exercise Capacity, Vascular Function, and Myocardial Ischemia Reperfusion Injury. Journal of the American Heart Association, 2020, 9, e017544.	3.7	27
5	Nonlethal Inhibition of Gut Microbial Trimethylamine Nâ€oxide Production Improves Cardiac Function and Remodeling in a Murine Model of Heart Failure. Journal of the American Heart Association, 2020, 9, e016223.	3.7	61
6	Efficacy of a Novel Mitochondrial-Derived Peptide in a Porcine Model of Myocardial Ischemia/Reperfusion Injury. JACC Basic To Translational Science, 2020, 5, 699-714.	4.1	15
7	Cardiometabolic HeartÂFailure and HFpEF. JACC Basic To Translational Science, 2019, 4, 422-424.	4.1	8
8	Cortical bone-derived stem cell therapy reduces apoptosis after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H820-H829.	3.2	16
9	Repeated cell transplantation and adjunct renal denervation in ischemic heart failure: exploring modalities for improving cell therapy efficacy. Basic Research in Cardiology, 2019, 114, 9.	5.9	8
10	Angiotensin Receptor-Neprilysin Inhibitors Emerge as Potential Treatment for Acute Myocardial Infarction. Journal of the American College of Cardiology, 2018, 72, 2357-2359.	2.8	4
11	Renal Denervation Prevents Heart Failure Progression Via Inhibition of the Renin-Angiotensin System. Journal of the American College of Cardiology, 2018, 72, 2609-2621.	2.8	84
12	Hydrogen Sulfide Attenuates ReninÂAngiotensin and Aldosterone Pathological Signaling to Preserve KidneyÂFunction and Improve ExerciseÁTolerance in Heart Failure. JACC Basic To Translational Science, 2018, 3, 796-809.	4.1	28
13	A novel fibroblast activation inhibitor attenuates left ventricular remodeling and preserves cardiac function in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H563-H570.	3.2	16
14	Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial Infarction. Circulation Research, 2017, 121, 1263-1278.	4.5	45
15	Acute right heart failure after hemorrhagic shock and trauma pneumonectomy—a management approach. Journal of Trauma and Acute Care Surgery, 2017, 82, 243-251.	2.1	10
16	A Feline HFpEF Model with Pulmonary Hypertension and Compromised Pulmonary Function. Scientific Reports, 2017, 7, 16587.	3.3	34
17	Combination Cell Therapy for IschemicÂCardiomyopathy. Journal of the American College of Cardiology, 2017, 70, 2516-2518.	2.8	2
18	Remodeling of repolarization and arrhythmia susceptibility in a myosin-binding protein C knockout mouse model. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H620-H630.	3.2	12

THOMAS E SHARP III

#	Article	IF	CITATIONS
19	Protein Kinase C Inhibition With Ruboxistaurin Increases Contractility and Reduces Heart Size in a Swine Model of HeartÂFailure With Reduced Ejection Fraction. JACC Basic To Translational Science, 2017, 2, 669-683.	4.1	8
20	Nuquantus: Machine learning software for the characterization and quantification of cell nuclei in complex immunofluorescent tissue images. Scientific Reports, 2016, 6, 23431.	3.3	13
21	Acute Catecholamine Exposure Causes Reversible Myocyte Injury Without Cardiac Regeneration. Circulation Research, 2016, 119, 865-879.	4.5	71
22	Abstract 53: Characterization of a Feline HFpEF Model Induced by Slow Progressive Pressure Overload. Circulation Research, 2016, 119, .	4.5	0
23	Autologous câ€Kit+ Mesenchymal Stem Cell Injections Provide Superior Therapeutic Benefit as Compared to câ€Kit+ Cardiacâ€Derived Stem Cells in a Feline Model of Isoproterenolâ€Induced Cardiomyopathy. Clinical and Translational Science, 2015, 8, 425-431.	3.1	24
24	BAG3: a new player in the heart failure paradigm. Heart Failure Reviews, 2015, 20, 423-434.	3.9	79
25	Unique Features of Cortical Bone Stem Cells Associated With Repair of the Injured Heart. Circulation Research, 2015, 117, 1024-1033.	4.5	29
26	Stem Cell Therapy and Breast Cancer Treatment: Review of Stem Cell Research and Potential Therapeutic Impact Against Cardiotoxicities Due to Breast Cancer Treatment. Frontiers in Oncology, 2014, 4, 299.	2.8	10
27	Sorafenib Cardiotoxicity Increases Mortality After Myocardial Infarction. Circulation Research, 2014, 114, 1700-1712.	4.5	69
28	T-type Ca2+ channels regulate the exit of cardiac myocytes from the cell cycle after birth. Journal of Molecular and Cellular Cardiology, 2013, 62, 122-130.	1.9	14
29	Bone-Derived Stem Cells Repair the Heart After Myocardial Infarction Through Transdifferentiation and Paracrine Signaling Mechanisms. Circulation Research, 2013, 113, 539-552.	4.5	156