Robert J Kerns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/177581/publications.pdf Version: 2024-02-01

POREDTIKEDNS

#	Article	IF	CITATIONS
1	Small molecule SWELL1 complex induction improves glycemic control and nonalcoholic fatty liver disease in murine Type 2 diabetes. Nature Communications, 2022, 13, 784.	12.8	19
2	A Novel Triphenylphosphonium Carrier to Target Mitochondria without Uncoupling Oxidative Phosphorylation. Journal of Medicinal Chemistry, 2021, 64, 662-676.	6.4	50
3	Suppression of human T cell activation by derivatives of glycerol monolaurate. Scientific Reports, 2021, 11, 8943.	3.3	7
4	Effect of mitoquinone (Mito-Q) on neuropathic endpoints in an obese and type 2 diabetic rat model. Free Radical Research, 2020, 54, 311-318.	3.3	19
5	Identification of an ethyl 5,6-dihydropyrazolo[1,5-c]quinazoline-1-carboxylate as a catalytic inhibitor of DNA gyrase. Bioorganic and Medicinal Chemistry, 2020, 28, 115439.	3.0	8
6	Probing structural requirements for human topoisomerase I inhibition by a novel N1-Biphenyl fluoroquinolone. European Journal of Medicinal Chemistry, 2019, 172, 109-130.	5.5	9
7	The C7-aminomethylpyrrolidine group rescues the activity of a thio-fluoroquinolone. Biochimie, 2019, 160, 24-27.	2.6	5
8	Novel N-1 substituted fluoroquinolones inhibit human topoisomerase I activity and exhibit anti-proliferative activity. Investigational New Drugs, 2019, 37, 378-383.	2.6	5
9	Design, synthesis, and evaluation of novel N-1 fluoroquinolone derivatives: Probing for binding contact with the active site tyrosine of gyrase. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1903-1910.	2.2	17
10	Bacterial Type II Topoisomerases and Target-Mediated Drug Resistance. , 2018, , 507-529.		13
11	Effect of a mitochondrialâ€ŧargeted coenzyme Q analog on pancreatic βâ€cell function and energetics in high fat fed obese mice. Pharmacology Research and Perspectives, 2018, 6, e00393.	2.4	26
12	Metabolic effects of a mitochondrial-targeted coenzyme Q analog in high fat fed obese mice. Pharmacology Research and Perspectives, 2017, 5, e00301.	2.4	22
13	Interactions between Quinolones and <i>Bacillus anthracis</i> Gyrase and the Basis of Drug Resistance. Biochemistry, 2017, 56, 4191-4200.	2.5	16
14	Suppression of gyrase-mediated resistance by C7 aryl fluoroquinolones. Nucleic Acids Research, 2016, 44, 3304-3316.	14.5	19
15	Crystal structure and stability of gyrase–fluoroquinolone cleaved complexes from <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1706-1713.	7.1	164
16	Fluoroquinolone interactions with <i>Mycobacterium tuberculosis</i> gyrase: Enhancing drug activity against wild-type and resistant gyrase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E839-46.	7.1	73
17	<i>N-</i> Arylacyl <i>O-</i> sulfonated aminoglycosides as novel inhibitors of human neutrophil elastase, cathepsin G and proteinase 3. Glycobiology, 2016, 26, 701-709.	2.5	25
18	Fluoroquinolones stimulate the DNA cleavage activity of topoisomerase IV by promoting the binding of Mg2+ to the second metal binding site. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 569-575.	2.4	6

Robert J Kerns

#	Article	IF	CITATIONS
19	Activity of Quinolone CP-115,955 Against Bacterial and Human Type II Topoisomerases Is Mediated by Different Interactions. Biochemistry, 2015, 54, 1278-1286.	2.5	22
20	Bacillus anthracis GrlA ^{V96A} Topoisomerase IV, a Quinolone Resistance Mutation That Does Not Affect the Water-Metal Ion Bridge. Antimicrobial Agents and Chemotherapy, 2014, 58, 7182-7187.	3.2	10
21	A Mitochondrial-Targeted Coenzyme Q Analog Prevents Weight Gain and Ameliorates Hepatic Dysfunction in High-Fat–Fed Mice. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 699-708.	2.5	39
22	Bypassing Fluoroquinolone Resistance with Quinazolinediones: Studies of Drug–Gyrase–DNA Complexes Having Implications for Drug Design. ACS Chemical Biology, 2014, 9, 2895-2904.	3.4	38
23	Mechanism of Quinolone Action and Resistance. Biochemistry, 2014, 53, 1565-1574.	2.5	889
24	Role of the Water–Metal Ion Bridge in Mediating Interactions between Quinolones and <i>Escherichia coli</i> Topoisomerase IV. Biochemistry, 2014, 53, 5558-5567.	2.5	38
25	Lethal synergy involving bicyclomycin: an approach for reviving old antibiotics. Journal of Antimicrobial Chemotherapy, 2014, 69, 3227-3235.	3.0	29
26	Overcoming Target-Mediated Quinolone Resistance in Topoisomerase IV by Introducing Metal-Ion-Independent Drug–Enzyme Interactions. ACS Chemical Biology, 2013, 8, 2660-2668.	3.4	59
27	Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance. Nucleic Acids Research, 2013, 41, 4628-4639.	14.5	130
28	Drug Interactions with <i>Bacillus anthracis</i> Topoisomerase IV: Biochemical Basis for Quinolone Action and Resistance. Biochemistry, 2012, 51, 370-381.	2.5	79
29	Synthetic Methods To Incorporate α-Linked 2-Amino-2-Deoxy-D-Glucopyranoside and 2-Amino-2-Deoxy-D-Galactopyranoside Residues into Glycoconjugate Structures. ACS Symposium Series, 2012, , 235-263.	0.5	7
30	Quinolones: Action and Resistance Updated. Current Topics in Medicinal Chemistry, 2009, 9, 981-998.	2.1	292
31	Quinolone-Mediated Bacterial Death. Antimicrobial Agents and Chemotherapy, 2008, 52, 385-392.	3.2	450
32	Susceptibility studies of piperazinyl–cross-linked fluoroquinolone dimers against test strains of Gram-positive and Gram-negative bacteria. Diagnostic Microbiology and Infectious Disease, 2006, 54, 305-310.	1.8	9
33	Synthetic Methods to Incorporate α-Linked 2-Amino-2-Deoxy-D-Glucopyranoside and 2-Amino-2-Deoxy-D-Galactopyranoside Residues into Glycoconjugate Structures. ACS Symposium Series, 2006, , 205-236.	0.5	5
34	Structural features of piperazinyl-linked ciprofloxacin dimers required for activity against drug-resistant strains of Staphylococcus aureus. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2109-2112.	2.2	78
35	Piperazinyl-linked fluoroquinolone dimers possessing potent antibacterial activity against drug-resistant strains of Staphylococcus aureus. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1745-1749.	2.2	51
36	Selective <i>N</i> -Sulfation of Glucosamine Derivatives using Phenyl Chlorosulfate in Non-Aqueous Solvent. Synthetic Communications, 1996, 26, 2671-2680.	2.1	6