
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1775009/publications.pdf Version: 2024-02-01

IAMES & FIELD

#	Article	IF	CITATIONS
1	Analysis of hydrophilic per- and polyfluorinated sulfonates including trifluoromethanesulfonate using solid phase extraction and mixed-mode liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2022, 1664, 462817.	3.7	6
2	Fate of bis-(4-tert-butyl phenyl)-iodonium under photolithography relevant irradiation and the environmental risk properties of the formed photoproducts. Environmental Science and Pollution Research, 2022, 29, 25988-25994.	5.3	0
3	Enhanced removal of per- and polyfluoroalkyl substances by crosslinked polyaniline polymers. Chemical Engineering Journal, 2022, 446, 137246.	12.7	8
4	Quinone Moieties Link the Microbial Respiration of Natural Organic Matter to the Chemical Reduction of Diverse Nitroaromatic Compounds. Environmental Science & amp; Technology, 2022, 56, 9387-9397.	10.0	7
5	Tailored Polyanilines Are High-Affinity Adsorbents for Per- and Polyfluoroalkyl Substances. ACS ES&T Water, 2022, 2, 1402-1410.	4.6	2
6	Reductive transformation of the insensitive munitions compound nitroguanidine by different iron-based reactive minerals. Environmental Pollution, 2022, 309, 119788.	7.5	4
7	Anammox enrichment culture has unexpected capabilities to biotransform azole contaminants of emerging concern. Chemosphere, 2021, 264, 128550.	8.2	2
8	Bioconcentration potential and microbial toxicity of onium cations in photoacid generators. Environmental Science and Pollution Research, 2021, 28, 8915-8921.	5.3	7
9	Toxicity of abrasive nanoparticles (SiO2, CeO2, and Al2O3) on Aliivibrio fischeri and human bronchial epithelial cells (16HBE140-). Journal of Nanoparticle Research, 2021, 23, 1.	1.9	4
10	Bacteria Make a Living Breathing the Nitroheterocyclic Insensitive Munitions Compound 3-Nitro-1,2,4-triazol-5-one (NTO). Environmental Science & Technology, 2021, 55, 5806-5814.	10.0	12
11	Synthesis and Characterization of Customizable Polyaniline-Derived Polymers and Their Application for Perfluorooctanoic Acid Removal from Aqueous Solution. ACS ES&T Water, 2021, 1, 1438-1446.	4.6	3
12	Photochemical fate of sulfonium photoacid generator cations under photolithography relevant UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 416, 113324.	3.9	5
13	Covalent binding with model quinone compounds unveils the environmental fate of the insensitive munitions reduced product 2,4-diaminoanisole (DAAN) under anoxic conditions. Journal of Hazardous Materials, 2021, 413, 125459.	12.4	6
14	Aerobic biodegradation of emerging azole contaminants by return activated sludge and enrichment cultures. Journal of Hazardous Materials, 2021, 417, 126151.	12.4	3
15	Iron(II) monosulfide (FeS) minerals reductively transform the insensitive munitions compounds 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO). Chemosphere, 2021, 285, 131409.	8.2	10
16	Covalent bonding of aromatic amine daughter products of 2,4-dinitroanisole (DNAN) with model quinone compounds representing humus via nucleophilic addition. Environmental Pollution, 2021, 268, 115862.	7.5	5
17	The Role of Manganese Dioxide in the Natural Formation of Organochlorines. ACS ES&T Water, 2021, 1, 2523-2530.	4.6	2
18	Toxicity of azoles towards the anaerobic ammonium oxidation (anammox) process. Journal of Chemical Technology and Biotechnology, 2020, 95, 1057-1063.	3.2	4

#	Article	IF	CITATIONS
19	Microbial toxicity of gallium- and indium-based oxide and arsenide nanoparticles. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2020, 55, 168-178.	1.7	18
20	Diazole and triazole inhibition of nitrification process in return activated sludge. Chemosphere, 2020, 241, 124993.	8.2	8
21	LC-ICP-OES method for antimony speciation analysis in liquid samples. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2020, 55, 457-463.	1.7	11
22	Effects of graphene oxide and reduced graphene oxide on acetoclastic, hydrogenotrophic and methylotrophic methanogenesis. Biodegradation, 2020, 31, 35-45.	3.0	12
23	Rapid biotransformation of the insensitive munitions compound, 3-nitro-1,2,4-triazol-5-one (NTO), by wastewater sludge. World Journal of Microbiology and Biotechnology, 2020, 36, 67.	3.6	6
24	Cytotoxicity Assessment of Gallium- and Indium-Based Nanoparticles Toward Human Bronchial Epithelial Cells Using an Impedance-Based Real-Time Cell Analyzer. International Journal of Toxicology, 2020, 39, 218-231.	1.2	3
25	Platinum(II) reduction to platinum nanoparticles in anaerobic sludge. Journal of Chemical Technology and Biotechnology, 2019, 94, 468-474.	3.2	1
26	Microbial Enrichment Culture Responsible for the Complete Oxidative Biodegradation of 3-Amino-1,2,4-triazol-5-one (ATO), the Reduced Daughter Product of the Insensitive Munitions Compound 3-Nitro-1,2,4-triazol-5-one (NTO). Environmental Science & Technology, 2019, 53, 12648-12656.	10.0	18
27	Reductive biotransformation as a pretreatment to enhance in situ chemical oxidation of nitroaromatic and nitroheterocyclic explosives. Chemosphere, 2019, 222, 1025-1032.	8.2	9
28	Coupling reactions between reduced intermediates of insensitive munitions compound analog 4-nitroanisole. Chemosphere, 2019, 222, 789-796.	8.2	4
29	Adaptation of granular sludge microbial communities to nitrate, sulfide, and/or p-cresol removal. International Microbiology, 2019, 22, 305-316.	2.4	4
30	Stability and microbial toxicity of HfO ₂ and ZrO ₂ nanoparticles for photolithography. Green Materials, 2019, 7, 109-117.	2.1	3
31	Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE140- human bronchial epithelial cells. Environmental Research, 2018, 164, 452-458.	7.5	23
32	Oxidation of reduced daughter products from 2,4-dinitroanisole (DNAN) by Mn(IV) and Fe(III) oxides. Chemosphere, 2018, 201, 790-798.	8.2	14
33	Evidence of anaerobic coupling reactions between reduced intermediates of 4-nitroanisole. Chemosphere, 2018, 195, 372-380.	8.2	10
34	Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge. Journal of Chemical Technology and Biotechnology, 2018, 93, 1611-1617.	3.2	3
35	Pretreatments to enhance the anaerobic biodegradability of <i>Chlorella protothecoides</i> algal biomass. Environmental Progress and Sustainable Energy, 2018, 37, 418-424.	2.3	8
36	Ecotoxicity of the insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) and its reduced metabolite 3-amino-1,2,4-triazol-5-one (ATO). Journal of Hazardous Materials, 2018, 343, 340-346.	12.4	41

#	Article	IF	CITATIONS
37	Abiotic reduction of insensitive munition compounds by sulfate green rust. Environmental Chemistry, 2018, 15, 259.	1.5	16
38	Adsorption and oxidation of 3-nitro-1,2,4-triazole-5-one (NTO) and its transformation product (3-amino-1,2,4-triazole-5-one, ATO) at ferrihydrite and birnessite surfaces. Environmental Pollution, 2018, 240, 200-208.	7.5	16
39	Gallium arsenide (GaAs) leaching behavior and surface chemistry changes in response to pH and O2. Waste Management, 2018, 77, 1-9.	7.4	20
40	Ecotoxicity assessment of ionic As(III), As(V), In(III) and Ga(III) species potentially released from novel III-V semiconductor materials. Ecotoxicology and Environmental Safety, 2017, 140, 30-36.	6.0	21
41	Nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production. Renewable Energy, 2017, 108, 410-416.	8.9	71
42	Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions. Journal of Hazardous Materials, 2017, 336, 57-64.	12.4	81
43	Elemental copper nanoparticle toxicity to anaerobic ammonium oxidation and the influence of ethylene diamine-tetra acetic acid (EDTA) on copper toxicity. Chemosphere, 2017, 184, 730-737.	8.2	19
44	Transferable Training Modules. Family and Community Health, 2017, 40, 306-315.	1.1	2
45	Environmental Fate of ¹⁴ C Radiolabeled 2,4-Dinitroanisole in Soil Microcosms. Environmental Science & Technology, 2017, 51, 13327-13334.	10.0	13
46	Continuous reduction of tellurite to recoverable tellurium nanoparticles using an upflow anaerobic sludge bed (UASB) reactor. Water Research, 2017, 108, 189-196.	11.3	37
47	Sequential anaerobic-aerobic biodegradation of emerging insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO). Chemosphere, 2017, 167, 478-484.	8.2	38
48	Mechanisms and Control of NO ₂ ^{â^'} Inhibition of Anaerobic Ammonium Oxidation (Anammox). Water Environment Research, 2017, 89, 330-336.	2.7	8
49	Zebrafish embryo toxicity of anaerobic biotransformation products from the insensitive munitions compound 2,4â€dinitroanisole. Environmental Toxicology and Chemistry, 2016, 35, 2774-2781.	4.3	19
50	Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage. Journal of Hazardous Materials, 2016, 317, 335-343.	12.4	21
51	Identifying Toxic Biotransformation Products of the Insensitive Munitions Compound, 2,4-Dinitroanisole (DNAN), Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Mass Spectrometry (LC-QToF-MS). ACS Symposium Series, 2016, , 133-145.	0.5	2
52	Microbial toxicity and characterization of DNAN (bio)transformation product mixtures. Chemosphere, 2016, 154, 499-506.	8.2	16
53	Natural Production of Organohalide Compounds in the Environment. , 2016, , 7-29.		22
54	Nitrate Reverses Severe Nitrite Inhibition of Anaerobic Ammonium Oxidation (Anammox) Activity in Continuously-Fed Bioreactors. Environmental Science & Technology, 2016, 50, 10518-10526.	10.0	15

#	Article	IF	CITATIONS
55	Microbial toxicity of ionic species leached from the II-VI semiconductor materials, cadmium telluride (CdTe) and cadmium selenide (CdSe). Chemosphere, 2016, 162, 131-138.	8.2	20
56	Microbial toxicity and biodegradability of perfluorooctane sulfonate (PFOS) and shorter chain perfluoroalkyl and polyfluoroalkyl substances (PFASs). Environmental Sciences: Processes and Impacts, 2016, 18, 1236-1246.	3.5	77
57	Continuous removal and recovery of palladium in an upflow anaerobic granular sludge bed (<scp>UASB</scp>) reactor. Journal of Chemical Technology and Biotechnology, 2016, 91, 1183-1189.	3.2	26
58	Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron. Journal of Hazardous Materials, 2016, 308, 97-105.	12.4	35
59	Exogenous nitrate attenuates nitrite toxicity to anaerobic ammonium oxidizing (anammox) bacteria. Chemosphere, 2016, 144, 2360-2367.	8.2	24
60	Arsenic (III, V), indium (III), and gallium (III) toxicity to zebrafish embryos using a high-throughput multi-endpoint inÂvivo developmental and behavioral assay. Chemosphere, 2016, 148, 361-368.	8.2	53
61	Iron sulfide attenuates the methanogenic toxicity of elemental copper and zinc oxide nanoparticles and their soluble metal ion analogs. Science of the Total Environment, 2016, 548-549, 380-389.	8.0	8
62	(Bio)transformation of 2,4-dinitroanisole (DNAN) in soils. Journal of Hazardous Materials, 2016, 304, 214-221.	12.4	46
63	Recovery of Elemental Tellurium Nanoparticles by the Reduction of Tellurium Oxyanions in a Methanogenic Microbial Consortium. Environmental Science & Technology, 2016, 50, 1492-1500.	10.0	63
64	Continuous treatment of the insensitive munitions compound N-methyl-p-nitro aniline (MNA) in an upflow anaerobic sludge blanket (UASB) bioreactor. Chemosphere, 2016, 144, 1116-1122.	8.2	8
65	Recovery of palladium(II) by methanogenic granular sludge. Chemosphere, 2016, 144, 745-753.	8.2	17
66	Arsenic remediation by formation of arsenic sulfide minerals in a continuous anaerobic bioreactor. Biotechnology and Bioengineering, 2016, 113, 522-530.	3.3	44
67	Adsorption of novel insensitive munitions compounds at clay mineral and metal oxide surfaces. Environmental Chemistry, 2015, 12, 74.	1.5	38
68	Adaptation of a Methanogenic Consortium to Arsenite Inhibition. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	4
69	Elemental copper nanoparticle toxicity to different trophic groups involved in anaerobic and anoxic wastewater treatment processes. Science of the Total Environment, 2015, 512-513, 308-315.	8.0	21
70	Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2. Journal of Environmental Management, 2015, 154, 78-85.	7.8	71
71	Fate of fluorescent core-shell silica nanoparticles during simulated secondary wastewater treatment. Water Research, 2015, 77, 170-178.	11.3	17
72	Biotransformation and Degradation of the Insensitive Munitions Compound, 3-Nitro-1,2,4-triazol-5-one, by Soil Bacterial Communities. Environmental Science & Technology, 2015, 49, 5681-5688.	10.0	54

#	Article	IF	CITATIONS
73	Response to the comments on "Cadmium telluride leaching behavior: Discussion of Zeng etÂal. (2015)― Journal of Environmental Management, 2015, 164, 65-66.	7.8	1
74	Inhibition of anaerobic ammonium oxidation by heavy metals. Journal of Chemical Technology and Biotechnology, 2015, 90, 830-837.	3.2	66
75	Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. Journal of Hazardous Materials, 2015, 283, 755-763.	12.4	45
76	Socially responsible mining: the relationship between mining and poverty, human health and the environment. Reviews on Environmental Health, 2014, 29, 83-9.	2.4	22
77	Stability of alumina, ceria, and silica nanoparticles in municipal wastewater. Water Science and Technology, 2014, 70, 1533-1539.	2.5	10
78	Synthesis of ¹³ C and ¹⁵ N labeled 2,4â€dinitroanisole. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 434-436.	1.0	3
79	The role of pH on the resistance of resting―and active anammox bacteria to NO ₂ ^{â^'} inhibition. Biotechnology and Bioengineering, 2014, 111, 1949-1956.	3.3	30
80	Pre-exposure to nitrite in the absence of ammonium strongly inhibits anammox. Water Research, 2014, 48, 52-60.	11.3	66
81	Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment. Journal of Environmental Management, 2014, 135, 110-117.	7.8	46
82	Inhibition of anaerobic wastewater treatment after long-term exposure to low levels of CuO nanoparticles. Water Research, 2014, 58, 160-168.	11.3	104
83	Starved anammox cells are less resistant to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>NO</mml:mtext></mml:mrow><mm inhibition. Water Research, 2014, 65, 170-176.</mm </mml:msubsup></mml:mrow></mml:math 	ıl:mn>2 <td>45 nml:mn> < m</td>	45 nml:mn> < m
84	Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions. Water Research, 2014, 66, 242-253.	11.3	58
85	Toxicity assessment of inorganic nanoparticles to acetoclastic and hydrogenotrophic methanogenic activity in anaerobic granular sludge. Journal of Hazardous Materials, 2013, 260, 278-285.	12.4	134
86	Assessing protein oxidation by inorganic nanoparticles with enzymeâ€linked immunosorbent assay (ELISA). Biotechnology and Bioengineering, 2013, 110, 694-701.	3.3	11
87	Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents. Chemosphere, 2013, 91, 22-27.	8.2	149
88	Microbial toxicity of the insensitive munitions compound, 2,4-dinitroanisole (DNAN), and its aromatic amine metabolites. Journal of Hazardous Materials, 2013, 262, 281-287.	12.4	49
89	Pathways of reductive 2,4â€dinitroanisole (DNAN) biotransformation in sludge. Biotechnology and Bioengineering, 2013, 110, 1595-1604.	3.3	63
90	Toxicity of Uranium to Microbial Communities in Anaerobic Biofilms. Water, Air, and Soil Pollution, 2012, 223, 3859-3868.	2.4	15

#	Article	IF	CITATIONS
91	Application and Validation of an Impedance-Based Real Time Cell Analyzer to Measure the Toxicity of Nanoparticles Impacting Human Bronchial Epithelial Cells. Environmental Science & Technology, 2012, 46, 10271-10278.	10.0	71
92	Fate of cerium dioxide (CeO2) nanoparticles in municipal wastewater during activated sludge treatment. Bioresource Technology, 2012, 108, 300-304.	9.6	84
93	Flexible bacterial strains that oxidize arsenite in anoxic or aerobic conditions and utilize hydrogen or acetate as alternative electron donors. Biodegradation, 2012, 23, 133-143.	3.0	17
94	Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae. Journal of Hazardous Materials, 2011, 192, 1572-1579.	12.4	90
95	Toxicity of copper(II) ions to microorganisms in biological wastewater treatment systems. Science of the Total Environment, 2011, 412-413, 380-385.	8.0	164
96	Cytotoxicity and physicochemical properties of hafnium oxide nanoparticles. Chemosphere, 2011, 84, 1401-1407.	8.2	47
97	Stoichiometric and molecular evidence for the enrichment of anaerobic ammonium oxidizing bacteria from wastewater treatment plant sludge samples. Chemosphere, 2011, 84, 1262-1269.	8.2	43
98	Uranium bioremediation in continuously fed upflow sand columns inoculated with anaerobic granules. Biotechnology and Bioengineering, 2011, 108, 2583-2591.	3.3	12
99	Long term performance of an arsenite-oxidizing-chlorate-reducing microbial consortium in an upflow anaerobic sludge bed (UASB) bioreactor. Bioresource Technology, 2011, 102, 5010-5016.	9.6	23
100	Reduction of bromate by biogenic sulfide produced during microbial sulfur disproportionation. Biodegradation, 2010, 21, 235-244.	3.0	23
101	Anoxic oxidation of arsenite linked to chemolithotrophic denitrification in continuous bioreactors. Biotechnology and Bioengineering, 2010, 105, 909-917.	3.3	28
102	Removal of nitrate and hexavalent uranium from groundwater by sequential treatment in bioreactors packed with elemental sulfur and zeroâ€valent iron. Biotechnology and Bioengineering, 2010, 107, 933-942.	3.3	30
103	The role of denitrification on arsenite oxidation and arsenic mobility in an anoxic sediment column model with activated alumina. Biotechnology and Bioengineering, 2010, 107, 786-794.	3.3	22
104	Methanogenic inhibition by roxarsone (4-hydroxy-3-nitrophenylarsonic acid) and related aromatic arsenic compounds. Journal of Hazardous Materials, 2010, 175, 352-358.	12.4	47
105	Anaerobic Oxidation of Arsenite Linked to Chlorate Reduction. Applied and Environmental Microbiology, 2010, 76, 6804-6811.	3.1	72
106	Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge. Water Research, 2010, 44, 2153-2162.	11.3	40
107	Anaerobic degradation of citrate under sulfate reducing and methanogenic conditions. Biodegradation, 2009, 20, 499-510.	3.0	15
108	Nitrate and nitrite inhibition of methanogenesis during denitrification in granular biofilms and digested domestic sludges. Biodegradation, 2009, 20, 801-812.	3.0	58

#	Article	IF	CITATIONS
109	Molecular characterization and in situ quantification of anoxic arsenite-oxidizing denitrifying enrichment cultures. FEMS Microbiology Ecology, 2009, 68, 72-85.	2.7	51
110	Assessment of in Situ Reductive Dechlorination Using Compound-Specific Stable Isotopes, Functional Gene PCR, and Geochemical Data. Environmental Science & amp; Technology, 2009, 43, 4301-4307.	10.0	30
111	Arsenite and Ferrous Iron Oxidation Linked to Chemolithotrophic Denitrification for the Immobilization of Arsenic in Anoxic Environments. Environmental Science & Technology, 2009, 43, 6585-6591.	10.0	80
112	Toxicity of fluoride to microorganisms in biological wastewater treatment systems. Water Research, 2009, 43, 3177-3186.	11.3	88
113	Microbial degradation of chlorinated benzenes. Biodegradation, 2008, 19, 463-480.	3.0	118
114	Microbial degradation of chlorinated phenols. Reviews in Environmental Science and Biotechnology, 2008, 7, 211-241.	8.1	137
115	Microbial transformation of chlorinated benzoates. Reviews in Environmental Science and Biotechnology, 2008, 7, 191-210.	8.1	25
116	Biologically mediated mobilization of arsenic from granular ferric hydroxide in anaerobic columns fed landfill leachate. Biotechnology and Bioengineering, 2008, 101, 1205-1213.	3.3	10
117	Anoxic oxidation of arsenite linked to denitrification in sludges and sediments. Water Research, 2008, 42, 4569-4577.	11.3	46
118	Microbial transformation and degradation of polychlorinated biphenyls. Environmental Pollution, 2008, 155, 1-12.	7.5	272
119	Microbial community dynamics in a chemolithotrophic denitrification reactor inoculated with methanogenic granular sludge. Chemosphere, 2008, 70, 462-474.	8.2	93
120	Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors. Chemosphere, 2008, 71, 114-122.	8.2	59
121	Microbial degradation of chlorinated dioxins. Chemosphere, 2008, 71, 1005-1018.	8.2	112
122	Reductive Defluorination of Perfluorooctane Sulfonate. Environmental Science & Technology, 2008, 42, 3260-3264.	10.0	108
123	Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Research, 2007, 41, 1253-1262.	11.3	230
124	Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur. Biotechnology and Bioengineering, 2007, 96, 1073-1082.	3.3	51
125	Anaerobic Biotransformation of Organoarsenical Pesticides Monomethylarsonic Acid and Dimethylarsinic Acid. Journal of Agricultural and Food Chemistry, 2006, 54, 3959-3966.	5.2	42
126	Anaerobic Biotransformation of Roxarsone and Related N-Substituted Phenylarsonic Acids. Environmental Science & Technology, 2006, 40, 2951-2957.	10.0	170

#	Article	IF	CITATIONS
127	Toxicity of copper to acetoclastic and hydrogenotrophic activities of methanogens and sulfate reducers in anaerobic sludge. Chemosphere, 2006, 62, 121-127.	8.2	77
128	Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiology Letters, 2006, 152, 45-49.	1.8	112
129	Enhanced anaerobic biotransformation of carbon tetrachloride with precursors of vitamin B12 biosynthesis. Biodegradation, 2006, 17, 317-329.	3.0	9
130	Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnology and Bioengineering, 2006, 95, 1148-1157.	3.3	310
131	Riboflavin- and cobalamin-mediated biodegradation of chloroform in a methanogenic consortium. Biotechnology and Bioengineering, 2005, 89, 539-550.	3.3	36
132	Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge. Biotechnology and Bioengineering, 2005, 92, 810-819.	3.3	177
133	Enhancement of anaerobic carbon tetrachloride biotransformation in methanogenic sludge with redox active vitamins. Biodegradation, 2005, 16, 215-228.	3.0	20
134	Fate and biodegradability of sulfonated aromatic amines. Biodegradation, 2005, 16, 527-537.	3.0	121
135	Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry. Chemosphere, 2005, 59, 1219-1228.	8.2	51
136	Anaerobic microbial mobilization and biotransformation of arsenate adsorbed onto activated alumina. Water Research, 2005, 39, 199-209.	11.3	32
137	Methanogenic Inhibition by Arsenic Compounds. Applied and Environmental Microbiology, 2004, 70, 5688-5691.	3.1	51
138	Facile Reduction of Arsenate in Methanogenic Sludge. Biodegradation, 2004, 15, 185-196.	3.0	25
139	Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Reviews in Environmental Science and Biotechnology, 2004, 3, 185-254.	8.1	117
140	Activated Carbon as an Electron Acceptor and Redox Mediator during the Anaerobic Biotransformation of Azo Dyes. Environmental Science & Technology, 2003, 37, 402-408.	10.0	261
141	The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge. Water Research, 2003, 37, 3098-3109.	11.3	93
142	Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environmental Microbiology, 2002, 4, 51-57.	3.8	140
143	Azo dye decolourisation by anaerobic granular sludge. Chemosphere, 2001, 44, 1169-1176.	8.2	268
144	Veratryl alcohol-mediated oxidation of isoeugenyl acetate by lignin peroxidase. FEBS Journal, 2001, 265, 1008-1014.	0.2	14

#	Article	IF	CITATIONS
145	Infrared spectroscopy analysis of hemp (Cannabis sativa) after selective delignification by Bjerkandera sp. at different nitrogen levels. Enzyme and Microbial Technology, 2001, 28, 550-559.	3.2	44
146	Asymmetric reduction of ketones via whole cell bioconversions and transfer hydrogenation: complementary approaches. Tetrahedron: Asymmetry, 2001, 12, 1025-1034.	1.8	63
147	Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnology and Bioengineering, 2001, 75, 691-701.	3.3	171
148	Anaerobic Mineralization of Toluene by Enriched Sediments with Quinones and Humus as Terminal Electron Acceptors. Applied and Environmental Microbiology, 2001, 67, 4471-4478.	3.1	92
149	Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia. FEMS Microbiology Ecology, 2000, 34, 161-171.	2.7	146
150	Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds. Biodegradation, 2000, 11, 313-321.	3.0	67
151	Novel monochlorinated metabolites with a 1-benzoxepin skeleton from Mycena galopus. Tetrahedron Letters, 1999, 40, 5767-5770.	1.4	43
152	Biotransformation and Biodegradation of Selected Nitroaromatics under Anaerobic Conditions. Biotechnology Progress, 1999, 15, 358-365.	2.6	37
153	Dynamics of organohalogen production by the ecologically important fungusHypholoma fasciculare. FEMS Microbiology Letters, 1998, 158, 167-178.	1.8	12
154	Anaerobic-aerobic treatment of toxic pulping black liquor with upfront effluent recirculation. Journal of Bioscience and Bioengineering, 1998, 86, 97-110.	0.9	47
155	Natural Production Of Chloroform By Fungi. Phytochemistry, 1998, 49, 91-97.	2.9	53
156	Trichlorinated phenols from hypholoma elongatum. Phytochemistry, 1998, 49, 203-206.	2.9	23
157	Anaerobic treatment of hemp thermomechanical pulping wastewater. Water Research, 1998, 32, 3362-3370.	11.3	32
158	Purification and characterization of two lignin peroxidase isozymes produced byBjerkanderasp. strain BOS55. FEBS Letters, 1998, 422, 391-394.	2.8	43
159	Calculated ionisation potentials determine the oxidation of vanillin precursors by lignin peroxidase. FEBS Letters, 1998, 430, 390-392.	2.8	29
160	2-Chloro-1,4-dimethoxybenzene as a mediator of lignin peroxidase catalyzed oxidations. FEBS Letters, 1998, 439, 219-223.	2.8	23
161	Anaerobic Transformation of β-Hexachlorocyclohexane by Methanogenic Granular Sludge and Soil Microflora. Environmental Science & Technology, 1998, 32, 3299-3304.	10.0	65
162	Identification and Synthesis of Novel Chlorinatedp-Anisylpropanoid Metabolites fromBjerkanderaSpecies. Journal of Natural Products, 1998, 61, 1110-1114.	3.0	16

#	Article	IF	CITATIONS
163	2-Chloro-1,4-dimethoxybenzene Cation Radical: Formation and Role in the Lignin Peroxidase Oxidation of Anisyl Alcohol. Archives of Biochemistry and Biophysics, 1998, 360, 233-238.	3.0	19
164	Characterization of a Novel Manganese Peroxidase-Lignin Peroxidase Hybrid Isozyme Produced by Bjerkandera Species Strain BOS55 in the Absence of Manganese. Journal of Biological Chemistry, 1998, 273, 15412-15417.	3.4	247
165	Role of Organic Acids in the Manganese-Independent Biobleaching System of <i>Bjerkandera</i> sp. Strain BOS55. Applied and Environmental Microbiology, 1998, 64, 2409-2417.	3.1	38
166	Successive Mineralization and Detoxification of Benzo[<i>a</i>]pyrene by the White Rot Fungus <i>Bjerkandera</i> sp. Strain BOS55 and Indigenous Microflora. Applied and Environmental Microbiology, 1998, 64, 2853-2858.	3.1	119
167	2-Chloro-1,4-Dimethoxybenzene as a Novel Catalytic Cofactor for Oxidation of Anisyl Alcohol by Lignin Peroxidase. Applied and Environmental Microbiology, 1998, 64, 830-835.	3.1	22
168	Reduction of the 2,2′-Azinobis(3-Ethylbenzthiazoline-6-Sulfonate) Cation Radical by Physiological Organic Acids in the Absence and Presence of Manganese. Applied and Environmental Microbiology, 1998, 64, 2026-2031.	3.1	58
169	Degradation and Fate of Carbon Tetrachloride in Unadapted Methanogenic Granular Sludge. Applied and Environmental Microbiology, 1998, 64, 2350-2356.	3.1	37
170	Biotransformation of the Major Fungal Metabolite 3,5-Dichloro- <i>p</i> -Anisyl Alcohol under Anaerobic Conditions and Its Role in Formation of Bis(3,5-Dichloro-4-Hydroxyphenyl)methane. Applied and Environmental Microbiology, 1998, 64, 3225-3231.	3.1	15
171	Complete Biodegradation of the Azo Dye Azodisalicylate under Anaerobic Conditions. Environmental Science & Technology, 1997, 31, 2098-2103.	10.0	160
172	Biobleaching of oxygen delignified kraft pulp by several white rot fungal strains. Journal of Biotechnology, 1997, 53, 237-251.	3.8	72
173	SULFUR TUFT AND TURKEY TAIL:Biosynthesis and Biodegradation of Organohalogens by Basidiomycetes. Annual Review of Microbiology, 1997, 51, 375-414.	7.3	373
174	Biotransformation and biodegradation of <i>N</i> -substituted aromatics in methanogenic granular sludge. FEMS Microbiology Reviews, 1997, 20, 525-538.	8.6	83
175	Chlorinated anisyl metabolites produced by basidiomycetes. Mycological Research, 1997, 101, 372-374.	2.5	14
176	The formation of veratryl chloride by Bjerkandera sp. strain BOS55. Phytochemistry, 1997, 46, 1011-1013.	2.9	2
177	Biological Elimination of Polycyclic Aromatic Hydrocarbons in Solvent Extracts of Polluted Soil by the White Rot Fungus, Bjerkandera Sp. Strain BOS55. Environmental Technology (United Kingdom), 1996, 17, 317-323.	2.2	14
178	The tolerance of lignin peroxidase and manganese-dependent peroxidase to miscible solvents and the in vitro oxidation of anthracene in solvent: water mixtures. Enzyme and Microbial Technology, 1996, 18, 300-308.	3.2	59
179	Novel chlorometabolites produced by Bjerkandera species. Phytochemistry, 1996, 42, 1699-1701.	2.9	30
180	Continuous detoxification, transformation, and degradation of nitrophenols in upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering, 1996, 51, 439-449.	3.3	75

#	Article	IF	CITATIONS
181	Continuous detoxification, transformation, and degradation of nitrophenols in upflow anaerobic sludge blanket (UASB) reactors. , 1996, 51, 439.		1
182	Continuous detoxification, transformation, and degradation of nitrophenols in upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering, 1996, 51, 439-449.	3.3	56
183	Natural organohalogen production by basidiomycetes. Trends in Biotechnology, 1995, 13, 451-456.	9.3	63
184	Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie Van Leeuwenhoek, 1995, 67, 47-77.	1.7	293
185	Contribution of extractives to methanogenic toxicity of hemp black liquor. Journal of Bioscience and Bioengineering, 1995, 80, 383-388.	0.9	17
186	Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters. Biotechnology and Bioengineering, 1994, 44, 469-479.	3.3	109
187	Treatment of low strength soluble wastewaters in UASB reactors. Journal of Bioscience and Bioengineering, 1994, 77, 679-686.	0.9	45
188	Significant Biogenesis of Chlorinated Aromatics by Fungi in Natural Environments. Applied and Environmental Microbiology, 1994, 60, 264-270.	3.1	114
189	Physiological Role of Chlorinated Aryl Alcohols Biosynthesized De Novo by the White Rot Fungus <i>Bjerkandera</i> sp. Strain BOS55. Applied and Environmental Microbiology, 1994, 60, 271-277.	3.1	109
190	High tolerance of methanogens in granular sludge to oxygen. Biotechnology and Bioengineering, 1993, 42, 1360-1366.	3.3	85
191	Methanogenesis in granular sludge exposed to oxygen. FEMS Microbiology Letters, 1993, 114, 317-323.	1.8	44
192	Effect of cobalt on the anaerobic degradation of methanol. Journal of Bioscience and Bioengineering, 1993, 75, 368-374.	0.9	70
193	Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends in Biotechnology, 1993, 11, 44-49.	9.3	304
194	Stimulation of Ligninolytic Peroxidase Activity by Nitrogen Nutrients in the White Rot Fungus <i>Bjerkandera</i> sp. Strain BOS55. Applied and Environmental Microbiology, 1993, 59, 4031-4036.	3.1	124
195	Isolation and screening of basidiomycetes with high peroxidative activity. Mycological Research, 1992, 96, 1098-1104.	2.5	103
196	Evidence for a new extracellular peroxidase Manganese-inhibited peroxidase from the white-rot fungusBjerkanderasp. BOS 55. FEBS Letters, 1992, 299, 107-110.	2.8	78
197	De-novo biosynthesis of chlorinated aromatics by the white-rot fungusBjerkanderasp. BOS55 Formation of 3-chloro-anisaldehyde from glucose. FEBS Letters, 1992, 305, 220-224.	2.8	50
198	Influence of humic acids on the hydrolysis of potato protein during anaerobic digestion. Agricultural Wastes, 1985, 13, 105-114.	0.4	21