## Thomas R Ioerger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1774323/publications.pdf Version: 2024-02-01



THOMAS P LOEDCED

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | PHENIX: building new software for automated crystallographic structure determination. Acta<br>Crystallographica Section D: Biological Crystallography, 2002, 58, 1948-1954.       | 2.5  | 3,979     |
| 2  | High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism. PLoS Pathogens, 2011, 7, e1002251.                              | 4.7  | 935       |
| 3  | Comprehensive Essentiality Analysis of the <i>Mycobacterium tuberculosis</i> Genome via Saturating<br>Transposon Mutagenesis. MBio, 2017, 8, .                                    | 4.1  | 496       |
| 4  | Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nature Medicine, 2014, 20, 75-79.                   | 30.7 | 442       |
| 5  | Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nature Genetics, 2011, 43, 482-486.                           | 21.4 | 403       |
| 6  | FLAME—Fuzzy Logic Adaptive Model of Emotions. Autonomous Agents and Multi-Agent Systems, 2000, 3, 219-257.                                                                        | 2.1  | 319       |
| 7  | Recent developments in thePHENIXsoftware for automated crystallographic structure determination.<br>Journal of Synchrotron Radiation, 2004, 11, 53-55.                            | 2.4  | 319       |
| 8  | Tryptophan Biosynthesis Protects Mycobacteria from CD4 T-Cell-Mediated Killing. Cell, 2013, 155, 1296-1308.                                                                       | 28.9 | 296       |
| 9  | Identification of New Drug Targets and Resistance Mechanisms in Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e75245.                                                            | 2.5  | 223       |
| 10 | Global Assessment of Genomic Regions Required for Growth in Mycobacterium tuberculosis. PLoS<br>Pathogens, 2012, 8, e1002946.                                                     | 4.7  | 220       |
| 11 | Variation among Genome Sequences of H37Rv Strains of <i>Mycobacterium tuberculosis</i> from<br>Multiple Laboratories. Journal of Bacteriology, 2010, 192, 3645-3653.              | 2.2  | 216       |
| 12 | Leaderless Transcripts and Small Proteins Are Common Features of the Mycobacterial Translational Landscape. PLoS Genetics, 2015, 11, e1005641.                                    | 3.5  | 207       |
| 13 | MmpL3 Is the Cellular Target of the Antitubercular Pyrrole Derivative BM212. Antimicrobial Agents and Chemotherapy, 2012, 56, 324-331.                                            | 3.2  | 190       |
| 14 | TRANSIT - A Software Tool for Himar1 TnSeq Analysis. PLoS Computational Biology, 2015, 11, e1004401.                                                                              | 3.2  | 170       |
| 15 | Mutations in <i>pepQ</i> Confer Low-Level Resistance to Bedaquiline and Clofazimine in<br>Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 4590-4599. | 3.2  | 165       |
| 16 | Genome Analysis of Multi- and Extensively-Drug-Resistant Tuberculosis from KwaZulu-Natal, South<br>Africa. PLoS ONE, 2009, 4, e7778.                                              | 2.5  | 144       |
| 17 | Development of a Novel Lead that Targets M.Âtuberculosis Polyketide Synthase 13. Cell, 2017, 170,<br>249-259.e25.                                                                 | 28.9 | 124       |
| 18 | Large-scale chemical–genetics yields new M. tuberculosis inhibitor classes. Nature, 2019, 571, 72-78.                                                                             | 27.8 | 119       |

2

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | GWAS for quantitative resistance phenotypes in Mycobacterium tuberculosis reveals resistance genes and regulatory regions. Nature Communications, 2019, 10, 2128.                                                                                            | 12.8 | 111       |
| 20 | Maturing Mycobacterium smegmatis peptidoglycan requires non-canonical crosslinks to maintain shape. ELife, 2018, 7, .                                                                                                                                        | 6.0  | 108       |
| 21 | Discovery of Novel Nitrobenzothiazole Inhibitors for <i>Mycobacterium tuberculosis</i> ATP<br>Phosphoribosyl Transferase (HisC) through Virtual Screening. Journal of Medicinal Chemistry, 2008,<br>51, 5984-5992.                                           | 6.4  | 102       |
| 22 | Structure-Guided Discovery of Phenyl-diketo Acids as Potent Inhibitors of M.Âtuberculosis Malate<br>Synthase. Chemistry and Biology, 2012, 19, 1556-1567.                                                                                                    | 6.0  | 102       |
| 23 | Crystal Structure of Circadian Clock Protein KaiA from Synechococcus elongatus. Journal of<br>Biological Chemistry, 2004, 279, 20511-20518.                                                                                                                  | 3.4  | 93        |
| 24 | Diarylcoumarins inhibit mycolic acid biosynthesis and kill <i>Mycobacterium tuberculosis</i> by targeting FadD32. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11565-11570.                                   | 7.1  | 89        |
| 25 | Discovery of Novel Oral Protein Synthesis Inhibitors of Mycobacterium tuberculosis That Target<br>Leucyl-tRNA Synthetase. Antimicrobial Agents and Chemotherapy, 2016, 60, 6271-6280.                                                                        | 3.2  | 88        |
| 26 | <i>N</i> -methylation of a bactericidal compound as a resistance mechanism in <i>Mycobacterium<br/>tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America,<br>2016, 113, E4523-30.                               | 7.1  | 88        |
| 27 | A comprehensive characterization of PncA polymorphisms that confer resistance to pyrazinamide.<br>Nature Communications, 2017, 8, 588.                                                                                                                       | 12.8 | 87        |
| 28 | A vitamin B <sub>12</sub> transporter in <i>Mycobacterium tuberculosis</i> . Open Biology, 2013, 3, 120175.                                                                                                                                                  | 3.6  | 83        |
| 29 | Peptidoglycan synthesis in <i>Mycobacterium tuberculosis</i> is organized into networks with varying drug susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13087-13092.                           | 7.1  | 82        |
| 30 | Glyoxylate detoxification is an essential function of malate synthase required for carbon<br>assimilation in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences<br>of the United States of America, 2017, 114, E2225-E2232. | 7.1  | 82        |
| 31 | A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis. ELife, 2016, 5, .                                                                                                                                                  | 6.0  | 82        |
| 32 | TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities.<br>PLoS Pathogens, 2018, 14, e1006939.                                                                                                                 | 4.7  | 78        |
| 33 | Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate<br>Dehydrogenase as Potential Leads against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases,<br>2017, 3, 18-33.                                              | 3.8  | 77        |
| 34 | Identifying Essential Genes in Mycobacterium tuberculosis by Global Phenotypic Profiling. Methods in<br>Molecular Biology, 2015, 1279, 79-95.                                                                                                                | 0.9  | 75        |
| 35 | Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries.<br>Bioinformatics, 2013, 29, 695-703.                                                                                                                          | 4.1  | 74        |
| 36 | Conservation of cys–cys trp structural triads and their geometry in the protein domains of immunoglobulin superfamily members. Molecular Immunology, 1999, 36, 373-386.                                                                                      | 2.2  | 72        |

| #  | Article                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A Hidden Markov Model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion sequencing data. BMC Bioinformatics, 2013, 14, 303.                                                                                                                    | 2.6  | 72        |
| 38 | Chemical Genetic Interaction Profiling Reveals Determinants of Intrinsic Antibiotic Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .                                                                                                                | 3.2  | 70        |
| 39 | The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa. BMC Genomics, 2010, 11, 670.                                                                                                                             | 2.8  | 69        |
| 40 | <i>Mycobacterium tuberculosis</i> Dihydrofolate Reductase Is Not a Target Relevant to the<br>Antitubercular Activity of Isoniazid. Antimicrobial Agents and Chemotherapy, 2010, 54, 3776-3782.                                                                                                  | 3.2  | 67        |
| 41 | Selective Inactivity of Pyrazinamide against Tuberculosis in C3HeB/FeJ Mice Is Best Explained by Neutral pH of Caseum. Antimicrobial Agents and Chemotherapy, 2016, 60, 735-743.                                                                                                                | 3.2  | 62        |
| 42 | The Copper-Responsive RicR Regulon Contributes to Mycobacterium tuberculosis Virulence. MBio, 2014, 5, .                                                                                                                                                                                        | 4.1  | 61        |
| 43 | Perturbation of Cytochrome <i>c</i> Maturation Reveals Adaptability of the Respiratory Chain in Mycobacterium tuberculosis. MBio, 2013, 4, e00475-13.                                                                                                                                           | 4.1  | 58        |
| 44 | Comprehensive analysis of iron utilization by Mycobacterium tuberculosis. PLoS Pathogens, 2020, 16, e1008337.                                                                                                                                                                                   | 4.7  | 58        |
| 45 | Crystal structures of <i>Mycobacterium tuberculosis</i> Sâ€adenosylâ€Lâ€homocysteine hydrolase in ternary complex with substrate and inhibitors. Protein Science, 2008, 17, 2134-2144.                                                                                                          | 7.6  | 55        |
| 46 | Pyrrolinone–Pyrrolidine Oligomers as Universal Peptidomimetics. Journal of the American Chemical<br>Society, 2011, 133, 12350-12353.                                                                                                                                                            | 13.7 | 55        |
| 47 | Improved Phenoxyalkylbenzimidazoles with Activity against <i>Mycobacterium tuberculosis</i> Appear to Target QcrB. ACS Infectious Diseases, 2017, 3, 898-916.                                                                                                                                   | 3.8  | 54        |
| 48 | Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.<br>ELife, 2017, 6, .                                                                                                                                                                             | 6.0  | 53        |
| 49 | Opposing reactions in coenzyme A metabolism sensitize <i>Mycobacterium tuberculosis</i> to enzyme inhibition. Science, 2019, 363, .                                                                                                                                                             | 12.6 | 53        |
| 50 | Susceptibility of Mycobacterium tuberculosis Cytochrome <i>bd</i> Oxidase Mutants to Compounds<br>Targeting the Terminal Respiratory Oxidase, Cytochrome <i>c</i> . Antimicrobial Agents and<br>Chemotherapy, 2017, 61, .                                                                       | 3.2  | 49        |
| 51 | 2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and <i>Mycobacterium<br/>tuberculosis</i> : Structure–Activity Relationships, Mechanism of Action and Absorption,<br>Distribution, Metabolism, and Excretion Characterization. ACS Infectious Diseases, 2018, 4, 954-969. | 3.8  | 49        |
| 52 | Mutations in <i>fbiD</i> ( <i>Rv2983</i> ) as a Novel Determinant of Resistance to Pretomanid and<br>Delamanid in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 65, .                                                                                                | 3.2  | 48        |
| 53 | Metabolic Network for the Biosynthesis of Intra- and Extracellular α-Glucans Required for Virulence of Mycobacterium tuberculosis. PLoS Pathogens, 2016, 12, e1005768.                                                                                                                          | 4.7  | 46        |
| 54 | TEXTAL System: Artificial Intelligence Techniques for Automated Protein Model Building. Methods in Enzymology, 2003, 374, 244-270.                                                                                                                                                              | 1.0  | 45        |

| #  | Article                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Host-pathogen genetic interactions underlie tuberculosis susceptibility in genetically diverse mice.<br>ELife, 2022, 11, .                                                                                                                                                               | 6.0  | 44        |
| 56 | Multidrug-Resistant Tuberculosis in Panama Is Driven by Clonal Expansion of a Multidrug-Resistant<br>Mycobacterium tuberculosis Strain Related to the KZN Extensively Drug-Resistant M. tuberculosis<br>Strain from South Africa. Journal of Clinical Microbiology, 2013, 51, 3277-3285. | 3.9  | 41        |
| 57 | Behavioral and transcriptomic profiling of mice null for <i>Lphn3</i> , a gene implicated in <scp>ADHD</scp> and addiction. Molecular Genetics & Genomic Medicine, 2016, 4, 322-343.                                                                                                     | 1.2  | 40        |
| 58 | Exploring Key Orientations at Protein–Protein Interfaces with Small Molecule Probes. Journal of the American Chemical Society, 2013, 135, 167-173.                                                                                                                                       | 13.7 | 37        |
| 59 | Novel Pyrazole-Containing Compounds Active against <i>Mycobacterium tuberculosis</i> . ACS<br>Medicinal Chemistry Letters, 2019, 10, 1423-1429.                                                                                                                                          | 2.8  | 37        |
| 60 | Distinct Bacterial Pathways Influence the Efficacy of Antibiotics against Mycobacterium tuberculosis.<br>MSystems, 2020, 5, .                                                                                                                                                            | 3.8  | 37        |
| 61 | Genome-wide Phenotypic Profiling Identifies and Categorizes Genes Required for Mycobacterial Low<br>Iron Fitness. Scientific Reports, 2019, 9, 11394.                                                                                                                                    | 3.3  | 36        |
| 62 | Structures of Mycobacterium tuberculosis FadD10 Protein Reveal a New Type of Adenylate-forming<br>Enzyme. Journal of Biological Chemistry, 2013, 288, 18473-18483.                                                                                                                       | 3.4  | 35        |
| 63 | Trehalose-6-Phosphate-Mediated Toxicity Determines Essentiality of OtsB2 in Mycobacterium tuberculosis In Vitro and in Mice. PLoS Pathogens, 2016, 12, e1006043.                                                                                                                         | 4.7  | 35        |
| 64 | A Novel Antimycobacterial Compound Acts as an Intracellular Iron Chelator. Antimicrobial Agents and Chemotherapy, 2015, 59, 2256-2264.                                                                                                                                                   | 3.2  | 33        |
| 65 | Structural genomics approach to drug discovery for Mycobacterium tuberculosis. Current Opinion in Microbiology, 2009, 12, 318-325.                                                                                                                                                       | 5.1  | 31        |
| 66 | Statistical analysis of genetic interactions in Tn-Seq data. Nucleic Acids Research, 2017, 45, e93-e93.                                                                                                                                                                                  | 14.5 | 31        |
| 67 | Global Assessment of Mycobacterium avium subsp. <i>hominissuis</i> Genetic Requirement for Growth and Virulence. MSystems, 2019, 4, .                                                                                                                                                    | 3.8  | 31        |
| 68 | Impact of immunopathology on the antituberculous activity of pyrazinamide. Journal of Experimental<br>Medicine, 2018, 215, 1975-1986.                                                                                                                                                    | 8.5  | 29        |
| 69 | Altered Mycobacterium tuberculosis Cell Wall Metabolism and Physiology Associated With RpoB<br>Mutation H526D. Frontiers in Microbiology, 2018, 9, 494.                                                                                                                                  | 3.5  | 28        |
| 70 | Reannotation of translational start sites in the genome ofÂMycobacterium tuberculosis. Tuberculosis, 2013, 93, 18-25.                                                                                                                                                                    | 1.9  | 27        |
| 71 | Synthesis and evaluation of the 2,4-diaminoquinazoline series as anti-tubercular agents. Bioorganic and Medicinal Chemistry, 2014, 22, 6965-6979.                                                                                                                                        | 3.0  | 27        |
| 72 | Evaluating minimalist mimics by exploring key orientations on secondary structures (EKOS). Organic and Biomolecular Chemistry, 2013, 11, 7789.                                                                                                                                           | 2.8  | 26        |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Discovery of Antimicrobial Lipodepsipeptides Produced by a <i>Serratia</i> sp. within Mosquito<br>Microbiomes. ChemBioChem, 2018, 19, 1590-1594.                                                                                                      | 2.6  | 26        |
| 74 | Chlorflavonin Targets Acetohydroxyacid Synthase Catalytic Subunit IlvB1 for Synergistic Killing of <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2018, 4, 123-134.                                                                     | 3.8  | 26        |
| 75 | Nature-Inspired (di)Azine-Bridged Bisindole Alkaloids with Potent Antibacterial <i>In Vitro</i> and<br><i>In Vivo</i> Efficacy against Methicillin-Resistant <i>Staphylococcus aureus</i> . Journal of<br>Medicinal Chemistry, 2020, 63, 12623-12641. | 6.4  | 26        |
| 76 | Distance Metric Learning through Optimization of Ranking. , 2007, , .                                                                                                                                                                                 |      | 24        |
| 77 | Targeting protein biotinylation enhances tuberculosis chemotherapy. Science Translational Medicine, 2018, 10, .                                                                                                                                       | 12.4 | 24        |
| 78 | Crystal structure of <i>Mycobacterium tuberculosis</i> LrpA, a leucineâ€responsive global regulator associated with starvation response. Protein Science, 2008, 17, 159-170.                                                                          | 7.6  | 23        |
| 79 | Deletion of SenX3–RegX3, a key two-component regulatory system of Mycobacterium smegmatis,<br>results in growth defects under phosphate-limiting conditions. Microbiology (United Kingdom), 2012,<br>158, 2724-2731.                                  | 1.8  | 23        |
| 80 | Use of Multiplex Allele-Specific Polymerase Chain Reaction (MAS-PCR) to Detect Multidrug-Resistant<br>Tuberculosis in Panama. PLoS ONE, 2012, 7, e40456.                                                                                              | 2.5  | 23        |
| 81 | High-Throughput Sequencing Enhanced Phage Display Identifies Peptides That Bind Mycobacteria. PLoS<br>ONE, 2013, 8, e77844.                                                                                                                           | 2.5  | 22        |
| 82 | The 7-phenyl benzoxaborole series is active against Mycobacterium tuberculosis. Tuberculosis, 2018,<br>108, 96-98.                                                                                                                                    | 1.9  | 22        |
| 83 | Determining protein structure from electron-density maps using pattern matching. Acta<br>Crystallographica Section D: Biological Crystallography, 2000, 56, 722-734.                                                                                  | 2.5  | 21        |
| 84 | Crystal Structure of Mycobacterium tuberculosis Polyketide Synthase 11 (PKS11) Reveals Intermediates<br>in the Synthesis of Methyl-branched Alkylpyrones. Journal of Biological Chemistry, 2013, 288,<br>16484-16494.                                 | 3.4  | 21        |
| 85 | Anion-ï€ Interactions in Computer-Aided Drug Design: Modeling the Inhibition of Malate Synthase by<br>Phenyl-Diketo Acids. Journal of Chemical Information and Modeling, 2018, 58, 2085-2091.                                                         | 5.4  | 21        |
| 86 | Automatic modeling of protein backbones in electron-density mapsviaprediction of Cαcoordinates. Acta<br>Crystallographica Section D: Biological Crystallography, 2002, 58, 2043-2054.                                                                 | 2.5  | 20        |
| 87 | Chemical–genetic interaction mapping links carbon metabolism and cell wall structure to<br>tuberculosis drug efficacy. Proceedings of the National Academy of Sciences of the United States of<br>America, 2022, 119, e2201632119.                    | 7.1  | 20        |
| 88 | Structural Similarities and Differences between Two Functionally Distinct SecA Proteins,<br>Mycobacterium tuberculosis SecA1 and SecA2. Journal of Bacteriology, 2016, 198, 720-730.                                                                  | 2.2  | 19        |
| 89 | Identification of a Mycothiol-Dependent Nitroreductase from <i>Mycobacterium tuberculosis</i> .<br>ACS Infectious Diseases, 2018, 4, 771-787.                                                                                                         | 3.8  | 19        |
| 90 | Mycobacterium smegmatis HtrA Blocks the Toxic Activity of a Putative Cell Wall Amidase. Cell Reports, 2019, 27, 2468-2479 e3                                                                                                                          | 6.4  | 16        |

| #   | Article                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Synthesis, Structure–Activity Relationship, and Mechanistic Studies of Aminoquinazolinones<br>Displaying Antimycobacterial Activity. ACS Infectious Diseases, 2020, 6, 1951-1964.                                                                                                                    | 3.8 | 16        |
| 92  | Developing Synergistic Drug Combinations To Restore Antibiotic Sensitivity in Drug-Resistant<br>Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, .                                                                                                                       | 3.2 | 16        |
| 93  | Transposon mutagenesis in Mycobacterium abscessus identifies an essential penicillin-binding protein involved in septal peptidoglycan synthesis and antibiotic sensitivity. ELife, 0, 11, .                                                                                                          | 6.0 | 16        |
| 94  | Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression. BMC Bioinformatics, 2019, 20, 603.                                                                                                                                             | 2.6 | 15        |
| 95  | Cell-Cycle-Associated Expression Patterns Predict Gene Function in Mycobacteria. Current Biology, 2020, 30, 3961-3971.e6.                                                                                                                                                                            | 3.9 | 13        |
| 96  | Normalization of transposon-mutant library sequencing datasets to improve identification of conditionally essential genes. Journal of Bioinformatics and Computational Biology, 2016, 14, 1642004.                                                                                                   | 0.8 | 12        |
| 97  | PPE51 mediates uptake of trehalose across the mycomembrane of Mycobacterium tuberculosis.<br>Scientific Reports, 2022, 12, 2097.                                                                                                                                                                     | 3.3 | 12        |
| 98  | Inhibition of CorA-Dependent Magnesium Homeostasis Is Cidal in Mycobacterium tuberculosis.<br>Antimicrobial Agents and Chemotherapy, 2019, 63, .                                                                                                                                                     | 3.2 | 9         |
| 99  | Structure–Activity Relationships of Pyrazolo[1,5- <i>a</i> ]pyrimidin-7(4 <i>H</i> )-ones as<br>Antitubercular Agents. ACS Infectious Diseases, 2021, 7, 479-492.                                                                                                                                    | 3.8 | 9         |
| 100 | First Evaluation of GenoType MTBDR <i>plus</i> 2.0 Performed Directly on Respiratory Specimens in<br>Central America. Journal of Clinical Microbiology, 2016, 54, 2498-2502.                                                                                                                         | 3.9 | 8         |
| 101 | 3- <i>O</i> -Methyl-Alkylgallates Inhibit Fatty Acid Desaturation in Mycobacterium tuberculosis.<br>Antimicrobial Agents and Chemotherapy, 2019, 63, .                                                                                                                                               | 3.2 | 8         |
| 102 | Exploiting Homoplasy in Genome-Wide Association Studies to Enhance Identification of<br>Antibiotic-Resistance Mutations in Bacterial Genomes. Evolutionary Bioinformatics, 2020, 16,<br>117693432094493.                                                                                             | 1.2 | 8         |
| 103 | Automatic generation of communication and teamwork within multi-agent teams. Applied Artificial<br>Intelligence, 2001, 15, 875-916.                                                                                                                                                                  | 3.2 | 7         |
| 104 | Comparison of transposon and deletion mutants in Mycobacterium tuberculosis : The case of rv1248c<br>, encoding 2-hydroxy-3-oxoadipate synthase. Tuberculosis, 2015, 95, 689-694.                                                                                                                    | 1.9 | 7         |
| 105 | A statistical method to identify recombination in bacterial genomes based on SNP incompatibility. BMC<br>Bioinformatics, 2018, 19, 450.                                                                                                                                                              | 2.6 | 7         |
| 106 | Modeling Site-Specific Nucleotide Biases Affecting Himar1 Transposon Insertion Frequencies in TnSeq<br>Data Sets. MSystems, 2021, 6, e0087621.                                                                                                                                                       | 3.8 | 7         |
| 107 | Analysis of Gene Essentiality from TnSeq Data Using Transit. Methods in Molecular Biology, 2022, 2377, 391-421.                                                                                                                                                                                      | 0.9 | 7         |
| 108 | Biological Profiling Enables Rapid Mechanistic Classification of Phenotypic Screening Hits and<br>Identification of KatG Activation-Dependent Pyridine Carboxamide Prodrugs With Activity Against<br>Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 582416. | 3.9 | 6         |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Genetic models of latent tuberculosis in mice reveal differential influence of adaptive immunity.<br>Journal of Experimental Medicine, 2021, 218, .                                                                | 8.5 | 6         |
| 110 | Natural brominated phenoxyphenols kill persistent and biofilm-incorporated cells of MRSA and other pathogenic bacteria. Applied Microbiology and Biotechnology, 2020, 104, 5985-5998.                              | 3.6 | 5         |
| 111 | The Conserved Translation Factor LepA Is Required for Optimal Synthesis of a Porin Family in Mycobacterium smegmatis. Journal of Bacteriology, 2021, 203, .                                                        | 2.2 | 5         |
| 112 | Characterization of Drug-Resistant Lipid-Dependent Differentially Detectable Mycobacterium tuberculosis. Journal of Clinical Medicine, 2021, 10, 3249.                                                             | 2.4 | 5         |
| 113 | Resistance of Mycobacterium tuberculosis to indole 4-carboxamides occurs through alterations in drug metabolism and tryptophan biosynthesis. Cell Chemical Biology, 2021, 28, 1180-1191.e20.                       | 5.2 | 5         |
| 114 | Functional Genomics Screening Utilizing Mutant Mouse Embryonic Stem Cells Identifies Novel<br>Radiation-Response Genes. PLoS ONE, 2015, 10, e0120534.                                                              | 2.5 | 5         |
| 115 | Multiplexed Strain Phenotyping Defines Consequences of Genetic Diversity in Mycobacterium tuberculosis for Infection and Vaccination Outcomes. MSystems, 2022, 7, e0011022.                                        | 3.8 | 3         |
| 116 | Database Approaches and Data Representation in Structural Bioinformatics. , 2007, , .                                                                                                                              |     | 1         |
| 117 | High-Throughput Differentiation and Screening of a Library of Mutant Stem Cell Clones Defines New<br>Host-Based Genes Involved in Rabies Virus Infection. Stem Cells, 2015, 33, 2509-2522.                         | 3.2 | 1         |
| 118 | Identification of cyclic hexapeptides natural products with inhibitory potency against Mycobacterium tuberculosis. BMC Research Notes, 2018, 11, 416.                                                              | 1.4 | 1         |
| 119 | Deletion of Rv2571c Confers Resistance to Arylamide Compounds in Mycobacterium tuberculosis.<br>Antimicrobial Agents and Chemotherapy, 2021, 65, .                                                                 | 3.2 | 1         |
| 120 | An improved statistical method to identify chemical-genetic interactions by exploiting concentration-dependence. PLoS ONE, 2021, 16, e0257911.                                                                     | 2.5 | 1         |
| 121 | 6-Fluorophenylbenzohydrazides inhibit Mycobacterium tuberculosis growth through alteration of tryptophan biosynthesis. European Journal of Medicinal Chemistry, 2021, 226, 113843.                                 | 5.5 | 1         |
| 122 | A d-Phenylalanine-Benzoxazole Derivative Reveals the Role of the Essential Enzyme Rv3603c in the<br>Pantothenate Biosynthetic Pathway of Mycobacterium tuberculosis. ACS Infectious Diseases, 2022, 8,<br>330-342. | 3.8 | 1         |
| 123 | Introduction to selected papers from the 8th International Conference on Bioinformatics and<br>Computational Biology (BICOB 2016). Journal of Bioinformatics and Computational Biology, 2017, 15,<br>1702002.      | 0.8 | 0         |
| 124 | Mutations in the anti-sigma H factor RshA confer resistance to econazole and clotrimazole in Mycobacterium smegmatis. Access Microbiology, 2019, 1, e000070.                                                       | 0.5 | 0         |
| 125 | Comprehensive analysis of iron utilization by Mycobacterium tuberculosis. , 2020, 16, e1008337.                                                                                                                    |     | 0         |
|     |                                                                                                                                                                                                                    |     |           |

126 Comprehensive analysis of iron utilization by Mycobacterium tuberculosis. , 2020, 16, e1008337.

| #   | Article                                                                                         | IF | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------|----|-----------|
| 127 | Comprehensive analysis of iron utilization by Mycobacterium tuberculosis. , 2020, 16, e1008337. |    | Ο         |
| 128 | Comprehensive analysis of iron utilization by Mycobacterium tuberculosis. , 2020, 16, e1008337. |    | 0         |