Andrea Temperini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1773983/publications.pdf

Version: 2024-02-01

172457 265206 2,503 103 29 42 citations g-index h-index papers 128 128 128 1607 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Asymmetric Azidoselenenylation of Alkenes: A Key Step for the Synthesis of Enantiomerically Enriched Nitrogen-Containing Compounds. Angewandte Chemie - International Edition, 2003, 42, 3131-3133.	13.8	120
2	Novel azido-phenylselenenylation of double bonds. Evidence for a free-radical process. Journal of Organic Chemistry, 1991, 56, 6809-6813.	3.2	119
3	Preparation of a New Chiral Non-Racemic Sulfur-Containing Diselenide and Applications in Asymmetric Synthesis. Chemistry - A European Journal, 2002, 8, 1118.	3.3	114
4	New nitrogen containing chiral diselenides: synthesis and asymmetric addition reactions to olefins. Tetrahedron: Asymmetry, 2000, 11, 4645-4650.	1.8	81
5	General, Mild, and Metal-Free Synthesis of Phenyl Selenoesters from Anhydrides and Their Use in Peptide Synthesis. Journal of Organic Chemistry, 2017, 82, 4588-4603.	3.2	66
6	Alkynyl phenyl selenides as convenient precursors for the synthesis of stereodefined trisubstituted alkenes. Tetrahedron, 1995, 51, 4691-4700.	1.9	65
7	Iodosobenzene Diacetate and Diphenyl Diselenide: An Electrophilic Selenenylating Agent of Double Bonds. Synthetic Communications, 1998, 28, 1769-1778.	2.1	64
8	Efficient asymmetric selenomethoxylation and selenohydroxylation of alkenes with a new sulfur containing chiral diselenide. Tetrahedron Letters, 2000, 41, 3241-3245.	1.4	59
9	Asymmetric selenomethoxylation of alkenes with camphorselenenyl sulfate. Tetrahedron Letters, 1998, 39, 2809-2812.	1.4	55
10	Efficient asymmetric selenocyclizations of alkenyl oximes into cyclic nitrones and 1,2-oxazines promoted by sulfur containing diselenides. Tetrahedron: Asymmetry, 2001, 12, 3297-3304.	1.8	54
11	Asymmetric oxyselenenylation–deselenenylation reactions of alkenes induced by camphor diselenide and ammonium persulfate. A convenient one-pot synthesis of enantiomerically enriched allylic alcohols and ethers. Tetrahedron: Asymmetry, 1999, 10, 747-757.	1.8	49
12	A sulfur-containing diselenide as an efficient chiral reagent in asymmetric selenocyclization reactions. Tetrahedron: Asymmetry, 2001, 12, 1493-1502.	1.8	45
13	Optically active isoxazolidines and 1,3-amino alcohols by asymmetric selenocyclization reactions of O-allyl oximes. Tetrahedron: Asymmetry, 2001, 12, 3053-3059.	1.8	44
14	Synthesis of enantiomerically enriched \hat{l}^2 -hydroxy selenides by catalytic asymmetric ring opening of meso-epoxides with (phenylseleno)silanes. Tetrahedron, 2008, 64, 3337-3342.	1.9	41
15	Ring-Closure Reactions through Intramolecular Displacement of the Phenylselenonyl Group by Nitrogen Nucleophiles: A New Stereospecific Synthesis of N-Tosyl and N-Benzoyl-1,3-oxazolidin-2-ones from 12-Hydroxyalkyl Phenyl Selenides. Chemistry - A European Journal, 2004, 10, 1752-1764.	3.3	40
16	A Chiral Electrophilic Selenium Reagent To Promote the Kinetic Resolution of Racemic Allylic Alcohols. Organic Letters, 2004, 6, 4751-4753.	4.6	40
17	Intramolecular Nonbonding Interactions between Selenium and Sulfur – Spectroscopic Evidence and Importance in Asymmetric Synthesis. European Journal of Organic Chemistry, 2006, 2006, 4867-4873.	2.4	39
18	Selenium promoted synthesis of enantiopure pyrrolidines starting from chiral aminoalcohols. Tetrahedron: Asymmetry, 2007, 18, 2758-2767.	1.8	39

#	Article	IF	CITATIONS
19	Electrophilic Azido Selenenylation of Alkenes. A Simple Synthetic Route to Racemic Taxol Side Chain. Synthetic Communications, 1998, 28, 2167-2179.	2.1	38
20	Synthesis of SubstitutedSe-Phenyl Selenocarboxylates from Terminal Alkynes. European Journal of Organic Chemistry, 2004, 2004, 3447-3458.	2.4	38
21	Substituted azides from selenium-promoted deselenenylation of azido selenides. Glycosylation reactions of protected 2-azido-2-deoxy-1-selenoglycopyranoses. Journal of the Chemical Society Chemical Communications, 1994, , 1883.	2.0	37
22	Intramolecular Nucleophilic Deselenenylation Reactions Promoted by Benzeneselenenyl Triflate. Stereospecific Synthesis of Vicinal Amino Alcohol Precursors. Journal of Organic Chemistry, 1996, 61, 7085-7091.	3.2	37
23	Tumor Targeting by Peptide-Decorated Gold Nanoparticles. Molecular Pharmaceutics, 2019, 16, 2430-2444.	4.6	37
24	Enantioselective synthesis of heterocyclic compounds mediated by organoselenium reagents. Arkivoc, 2006, 2006, 186-206.	0.5	37
25	Asymmetric Amidoselenenylation of Alkenes Promoted by Camphorselenenyl Sulfate: A Useful Synthetic Route to Enantiopure Oxazolines. European Journal of Organic Chemistry, 2000, 2000, 3451-3457.	2.4	35
26	Oxidation of Diphenyl Diselenide with 2,3-Dichloro-5,6-dicyanobenzoquinone (DDQ). A New Method for the Electrophilic Phenylselenenylation of Alkenes under Mild Conditions. Synlett, 2001, 2001, 1767-1771.	1.8	35
27	Asymmetric synthesis of thioamido selenides. A simple synthetic route to enantiopure thiazolines. Tetrahedron: Asymmetry, 2002, 13, 429-435.	1.8	34
28	Synthesis of enantiomerically pure substituted tetrahydrofurans from epoxides and phenylselenium reagents. Tetrahedron: Asymmetry, 2004, 15, 405-412.	1.8	34
29	Stereocontrolled synthesis of substituted N-arenesulfonyl azetidines from Î ³ -(phenylseleno)alkyl arylsulfonamides. Organic and Biomolecular Chemistry, 2007, 5, 3510.	2.8	33
30	Synthesis of enantiomerically pure 1,4-dioxanes from alkenes promoted by organoselenium reagents. Tetrahedron: Asymmetry, 2003, 14, 1095-1102.	1.8	32
31	Synthesis of <scp>d</scp> - <i>erythro</i> -Sphinganine through Serine-Derived α-Amino Epoxides. Journal of Organic Chemistry, 2014, 79, 5320-5326.	3.2	32
32	Selenium-promoted synthesis of enantiomerically pure substituted morpholines starting from alkenes and chiral aminoalcohols. Tetrahedron: Asymmetry, 2003, 14, 2651-2657.	1.8	29
33	A unified strategy for the synthesis of three conicol marine natural products. Tetrahedron, 2015, 71, 3253-3262.	1.9	29
34	A Useful Preparation of S-Phenyl Carbothioates, Se-Phenyl Carboselenoates from Aldehydes and Mixed (O, S; O, Se) Acetals from Dialkyl Ethers. Synlett, 1995, 1995, 1129-1130.	1.8	28
35	Synthesis of enantiomerically pure perhydrofuro[3,4-b]pyrans and perhydrofuro[3,4-b]furans. Tetrahedron: Asymmetry, 2004, 15, 1949-1955.	1.8	28
36	Title is missing!. Angewandte Chemie, 2003, 115, 3239-3241.	2.0	27

3

#	Article	IF	Citations
37	Intramolecular addition of carbon radicals to aldehydes: synthesis of enantiopure tetrahydrofuran-3-ols. Tetrahedron, 2007, 63, 5482-5489.	1.9	25
38	Additive-Free Chemoselective Acylation of Amines. Synthetic Communications, 2009, 40, 295-302.	2.1	25
39	Recent advances in chemoselective acylation of amines. Tetrahedron Letters, 2018, 59, 2615-2621.	1.4	25
40	Organoselenium mediated asymmetric cyclizations. Synthesis of enantiomerically pure 1,6-dioxaspiro[4.4]nonanes. Tetrahedron: Asymmetry, 2006, 17, 2768-2774.	1.8	24
41	High-Pressure-Promoted Diels–Alder Approach to Biaryls: Application to the Synthesis of the Cannabinols Family. Journal of Organic Chemistry, 2012, 77, 7923-7931.	3.2	24
42	Pyrrolidinamine, piperidinamine and tetrahydropyridazine derivatives from selenium promoted cyclization of alkenyl phenylhydrazones. Tetrahedron, 1997, 53, 7311-7318.	1.9	23
43	Intramolecular Displacement of Phenylselenone by a Hydroxy Group: Stereoselective Synthesis of 2-Substituted Tetrahydrofurans. Organic Letters, 2013, 15, 3906-3909.	4.6	23
44	Phenylselenenyl sulfate induced cyclization of allylhydrazines. Synthesis of pyrazole derivatives. Tetrahedron, 1997, 53, 4441-4446.	1.9	22
45	Asymmetric Syntheses Promoted by Organoselenium Reagents. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 729-740.	1.6	22
46	A simple acylation of thiols with anhydrides. Tetrahedron Letters, 2010, 51, 5368-5371.	1.4	22
47	Factors controlling the selenium-induced cyclizations of alkenyl hydrazines to pyridazine or pyrrolidinamine derivatives. Tetrahedron, 1997, 53, 10591-10602.	1.9	21
48	Asymmetric Selenohydroxylation of Alkenes with Camphorselenenyl Sulfate. European Journal of Organic Chemistry, 1998, 1998, 2275-2277.	2.4	21
49	Synthesis of enantiomerically pure \hat{l}^2 -azidoselenides starting from natural terpenes. Tetrahedron, 2007, 63, 12373-12378.	1.9	21
50	Stereoselective Synthesis of Substituted Tetrahydropyrans and Isochromans by Cyclization of Phenylseleno Alcohols. Journal of Organic Chemistry, 2015, 80, 8102-8112.	3.2	21
51	One-Pot Conversion of Alkenes into Oxazolines and Oxazolidin-2-Ones Promoted by Diphenyl Diselenide. Synthetic Communications, 1997, 27, 4131-4140.	2.1	20
52	Asymmetric aldol reactions from titanium enolates of \hat{l}_{\pm} -seleno ketones and esters. Tetrahedron: Asymmetry, 2004, 15, 783-791.	1.8	19
53	Synthesis of enantiomerically pure perhydrofuro[2,3-b]furans. Tetrahedron: Asymmetry, 2005, 16, 2429-2435.	1.8	19
54	Stereoselective Synthesis of Dithia[3.3]cyclophane <i>S</i> , <i>S′</i> â€Dioxides with Planar and Central Chirality. European Journal of Organic Chemistry, 2014, 2014, 2099-2104.	2.4	18

#	Article	IF	CITATIONS
55	Electrophilic 2-Thienylselenenylation of Thiophene. Preparation of Oligo(seleno-2,5-thienylenes). Tetrahedron, 2000, 56, 3255-3260.	1.9	17
56	Stereospecific Synthesis of β ³ â€Amino Acid Derivatives from Propargylic Alcohols: Efficient Solutionâ€Phase Synthesis of Oligopeptides without Coupling Agents. Chemistry - A European Journal, 2009, 15, 7883-7895.	3.3	17
57	A reasonably stereospecific multistep conversion of Boc-protected \hat{l}_{\pm} -amino acids to Phth-protected \hat{l}^2 3-amino acids. Tetrahedron Letters, 2010, 51, 4121-4124.	1.4	17
58	Regio―and Stereocontrolled Synthesis of (<i>Z</i>)a€Î±â€(Phenylseleno)sulfinyl and â€sulfonyl Alkenes via Sulfenic Acids, and a Study of their Reactivity. European Journal of Organic Chemistry, 2011, 2011, 5668-5673.	2.4	17
59	Velnacrine thiaanalogues as potential agents for treating alzheimer's disease. Bioorganic and Medicinal Chemistry, 2001, 9, 2921-2928.	3.0	16
60	Conjugated Additions of Selenium Containing Enolates to Enones - Enantioselective Synthesis of ?-Oxo-?-Seleno Esters and Their Facile Transformations. European Journal of Organic Chemistry, 2005, 2005, 543-551.	2.4	15
61	Short Synthesis of (R)- and (S)-4-Amino-3-Hydroxybutyric Acid (GABOB). Synthesis, 2005, 2005, 579-582.	2.3	15
62	Selenium Promoted Stereospecific One-Pot Conversion Of Cinnamyl Derivatives Into Oxazoleses. A Simple Synthetic Route To Racemic Taxol Side Chain. Synthetic Communications, 1999, 29, 1773-1778.	2.1	14
63	Highâ€Pressureâ€Promoted Multicomponent and Metalâ€Free Synthesis of Polyfunctionalized Biaryls. European Journal of Organic Chemistry, 2017, 2017, 5370-5377.	2.4	13
64	Exploration of synthetic strategies for the stereoselective preparation of novel tetrahydrofuran-containing biaryls: A high-pressure promoted Diels-Alder approach. Tetrahedron, 2018, 74, 6534-6543.	1.9	13
65	Tripodal tris-disulfides as capping agents for a controlled mixed functionalization of gold nanoparticles. New Journal of Chemistry, 2018, 42, 16436-16440.	2.8	13
66	Synthesis of selenoxides by oxidation of selenides with superoxide radical anions and 2-nitrobenzenesulfonyl chloride. Tetrahedron Letters, 2005, 46, 5165-5168.	1.4	12
67	MOM-, MEM- and SEM-phenyl selenides as reagents for the protection of alcohols as alkoxymethyl ethers. Tetrahedron Letters, 2011, 52, 3179-3182.	1.4	12
68	N-(Phenylselenomethyl)phthalimide as new reagent for mild protection of alcohols as Pim-ethers. Tetrahedron Letters, 2012, 53, 2709-2711.	1.4	12
69	Toward Customized Tetrahydropyran Derivatives through Regioselective αâ€Lithiation and Functionalization of 2â€Phenyltetrahydropyran. European Journal of Organic Chemistry, 2016, 2016, 3157-3161.	2.4	12
70	Synthesis of \hat{I}^3 - and \hat{I} -Lactones from Alkynols. Synlett, 2006, 2006, 0587-0590.	1.8	11
71	O-(tert-butyl) Se-phenyl selenocarbonate: A convenient, bench-stable and metal-free precursor of benzeneselenol. Tetrahedron, 2020, 76, 131311.	1.9	11
72	Transition Metal-free Approaches to Biaryls. Current Organic Chemistry, 2019, 22, 2537-2554.	1.6	11

#	Article	IF	CITATIONS
73	2-(Phenylseleno)-1,4-dioxane as a Convenient Reagent for the Selective ÂProtection of Alcohols as 1,4-Dioxan-2-yl Ethers. Synlett, 2009, 2009, 2429-2432.	1.8	10
74	New access to 4-aryl[2,2]paracyclophanes by high-pressure Diels–Alder reaction. Tetrahedron Letters, 2016, 57, 917-919.	1.4	10
75	Reductive Etherification of Aldehydes and Ketones with Alcohols and Triethylsilane Catalysed by Yb(OTf) 3 : an Efficient Oneâ€Pot Benzylation of Alcohols. Advanced Synthesis and Catalysis, 2019, 361, 4527-4539.	4.3	10
76	Selenium Catalyzed Conversion of d-Phenyl-g-alkenyl Oximes into 2-Phenylpyridines. Heterocycles, 1996, 43, 2679.	0.7	10
77	A simple synthesis of (R)-3-aminooctanoic acid (D-BAOA) from (S)-1-octyn-3-ol. Tetrahedron Letters, 2007, 48, 4343-4345.	1.4	9
78	Magnesium bis (monoperoxyphthalate) hexahydrate as mild and efficient oxidant for the synthesis of selenones. Beilstein Journal of Organic Chemistry, 2014, 10, 1267-1271.	2.2	9
79	Bioassay-guided fractionation of Euphrasia pectinata Ten. and isolation of iridoids with antiproliferative activity. Phytochemistry Letters, 2015, 12, 252-256.	1.2	9
80	Isopropenyl acetate: A cheap and general acylating agent of alcohols under metal-free conditions. Tetrahedron Letters, 2017, 58, 4051-4053.	1.4	9
81	2,3-Diaminopropanols Obtained from d-Serine as Intermediates in the Synthesis of Protected 2,3-l-Diaminopropanoic Acid (l-Dap) Methyl Esters. Molecules, 2020, 25, 1313.	3.8	9
82	Kinetic Resolution of Allylic Alcohols Promoted by Electrophilic Selenium Reagents. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1071-1075.	1.6	8
83	Novel Stereoselective Synthesis of (R)-3-Aminotetradecanoic Acid (Iturinic Acid). Letters in Organic Chemistry, 2009, 6, 22-24.	0.5	6
84	Synthesis of enantiopure sugar-decorated six-armed triptycene derivatives. Beilstein Journal of Organic Chemistry, 2013, 9, 2410-2416.	2.2	6
85	Chemoselective and metal-free reduction of $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones by <i>in situ</i> produced benzeneselenol from <i>O</i> -(<i>tert</i> -butyl) Se-phenyl selenocarbonate. RSC Advances, 2020, 10, 33706-33717.	3.6	6
86	Scalable Multicomponent Synthesis of (Hetero)arylâ€Substituted Phenyls: Focus on Metalâ€Free Halogenated Biaryls, 3â€Arylindoles, and Isourolithine A Synthesis. European Journal of Organic Chemistry, 2019, 2019, 7711-7719.	2.4	4
87	Metal-Free Hyperbaric Multicomponent Approach to 4-Aryl[2.2]Paracyclophanes. Polycyclic Aromatic Compounds, 2021, 41, 1067-1076.	2.6	3
88	A straightforward synthesis of functionalized 6 <i>H</i> -benzo[<i>c</i>]chromenes from 3-alkenyl chromenes by intermolecular Dielsâ€"Alder/aromatization sequence. Organic and Biomolecular Chemistry, 2021, 19, 10359-10375.	2.8	3
89	Sequestering ability to Cu2+ of a new bodipy-based dye and its behavior as in vitro fluorescent sensor. Journal of Inorganic Biochemistry, 2017, 167, 116-123.	3.5	2
90	A Chiral Electrophilic Selenium Reagent to Promote the Kinetic Resolution of Racemic Allylic Alcohols ChemInform, 2005, 36, no.	0.0	1

#	Article	IF	CITATIONS
91	Stereoselective Synthesis of \hat{l}^2 (sup>3-Amino Acids and \hat{l}^2 -Oligopeptides Promoted by Organoselenium Intermediates. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1137-1143.	1.6	1
92	Metalâ€Free Synthesis of Alkyl Phenyl Selenides by Reaction of Activated Alcohols with the Oâ€(tertâ€) Tj ETQq	0 0 _{1.5} rgB	Г/Oyerlock 10
93	7-(Disubstituted thiazolyl)-3,5-dihydroxy-6-heptenoic/heptanoic acid derivatives as HMG-COa reductase inhibitors. Bioorganic and Medicinal Chemistry, 1994, 2, 799-806.	3.0	O
94	Asymmetric Azidoselenenylation of Alkenes: A Key Step for the Synthesis of Enantiomerically Enriched Nitrogen-Containing Compounds ChemInform, 2003, 34, no.	0.0	0
95	Selenium-Promoted Synthesis of Enantiomerically Pure Substituted Morpholines Starting from Alkenes and Chiral Aminoalcohols ChemInform, 2003, 34, no.	0.0	O
96	Synthesis of Enantiomerically Pure Perhydrofuro [3,4-b] pyrans and Perhydrofuro [3,4-b] furans ChemInform, 2004, 35, no.	0.0	0
97	Synthesis of Substituted Se-Phenyl Selenocarboxylates from Terminal Alkynes ChemInform, 2004, 35, no.	0.0	O
98	Conjugated Additions of Selenium Containing Enolates to Enones — Enantioselective Synthesis of Î-Oxo-α-Seleno Esters and Their Facile Transformations ChemInform, 2005, 36, no.	0.0	0
99	Short Synthesis of (R)- and (S)-4-Amino-3-hydroxybutyric Acid (GABOB) ChemInform, 2005, 36, no.	0.0	O
100	Synthesis of Selenoxides by Oxidation of Selenides with Superoxide Radical Anions and 2-Nitrobenzenesulfonyl Chloride ChemInform, 2005, 36, no.	0.0	0
101	Synthesis of Enantiomerically Pure Perhydrofuro [2,3-b] furans ChemInform, 2005, 36, no.	0.0	O
102	Front Cover: Toward Customized Tetrahydropyran Derivatives through Regioselective \hat{I}_{\pm} -Lithiation and Functionalization of 2-Phenyltetrahydropyran (Eur. J. Org. Chem. 19/2016). European Journal of Organic Chemistry, 2016, 2016, 3130-3130.	2.4	0
103	(Phenylseleno)acetic acid based precursor for the regiospecific synthesis of 1-phenylseleno-2-alkanones*. Synthetic Communications, 2022, 52, 1318-1325.	2.1	O