
Margit Cichna-Markl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1772723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of Mismatch Primers to Identify and Differentiate Closely Related (Sub)Species: Application to the Authentication of Meat Products. Methods in Molecular Biology, 2022, 2392, 65-82.	0.9	2
2	Interlaboratory Validation of a DNA Metabarcoding Assay for Mammalian and Poultry Species to Detect Food Adulteration. Foods, 2022, 11, 1108.	4.3	9
3	Development of a DNA Metabarcoding Method for the Identification of Bivalve Species in Seafood Products. Foods, 2021, 10, 2618.	4.3	9
4	Real-Time PCR Assay for the Detection and Quantification of Roe Deer to Detect Food Adulteration—Interlaboratory Validation Involving Laboratories in Austria, Germany, and Switzerland. Foods, 2021, 10, 2645.	4.3	3
5	Discrimination between 34 of 36 Possible Combinations of Three C>T SNP Genotypes in the MGMT Promoter by High Resolution Melting Analysis Coupled with Pyrosequencing Using A Single Primer Set. International Journal of Molecular Sciences, 2021, 22, 12527.	4.1	2
6	Identification of Mammalian and Poultry Species in Food and Pet Food Samples Using 16S rDNA Metabarcoding. Foods, 2021, 10, 2875.	4.3	15
7	Applicability of a duplex and four singleplex real-time PCR assays for the qualitative and quantitative determination of wild boar and domestic pig meat in processed food products. Scientific Reports, 2020, 10, 17243.	3.3	5
8	An Organometallic Gold(I) Bisâ€Nâ€Heterocyclic Carbene Complex with Multimodal Activity in Ovarian Cancer Cells. Chemistry - A European Journal, 2020, 26, 15528-15537.	3.3	42
9	Aberrant DNA Methylation of ABC Transporters in Cancer. Cells, 2020, 9, 2281.	4.1	23
10	Doublecortin and IGF-1R protein levels are reduced in spite of unchanged DNA methylation in the hippocampus of aged rats. Amino Acids, 2020, 52, 543-553.	2.7	3
11	Development of a DNA metabarcoding method for the identification of fifteen mammalian and six poultry species in food. Food Chemistry, 2019, 272, 354-361.	8.2	39
12	Time-dependent shotgun proteomics revealed distinct effects of an organoruthenium prodrug and its activation product on colon carcinoma cells. Metallomics, 2019, 11, 118-127.	2.4	26
13	Differentiation between wild boar and domestic pig in food by targeting two gene loci by real-time PCR. Scientific Reports, 2019, 9, 9221.	3.3	10
14	Red deer (Cervus elaphus)-specific real-time PCR assay for the detection of food adulteration. Food Control, 2018, 89, 157-166.	5.5	20
15	Development and validation of a fallow deer (Dama dama)-specific TaqMan real-time PCR assay for the detection of food adulteration. Food Chemistry, 2018, 243, 82-90.	8.2	25
16	Tetraplex real-time PCR assay for the simultaneous identification and quantification of roe deer, red deer, fallow deer and sika deer for deer meat authentication. Food Chemistry, 2018, 269, 486-494.	8.2	23
17	Sika deer (Cervus nippon)-specific real-time PCR method to detect fraudulent labelling of meat and meat products. Scientific Reports, 2018, 8, 7236.	3.3	21
18	Hypermethylation of CDKN2A exon 2 in tumor, tumor-adjacent and tumor-distant tissues from breast cancer patients. BMC Cancer, 2017, 17, 260.	2.6	27

#	Article	IF	CITATIONS
19	Hippocampal GluA2 and GluA4 protein but not corresponding mRNA and promoter methylation levels are modulated at retrieval in spatial learning of the rat. Amino Acids, 2017, 49, 117-127.	2.7	9
20	Promoter methylation patterns of <i>ABCB1</i> , <i>ABCC1</i> and <i>ABCC2</i> in human cancer cell lines, multidrug-resistant cell models and tumor, tumor-adjacent and tumor-distant tissues from breast cancer patients. Oncotarget, 2016, 7, 73347-73369.	1.8	31
21	A novel reference real-time PCR assay for the relative quantification of (game) meat species in raw and heat-processed food. Food Control, 2016, 70, 392-400.	5.5	28
22	Acquired nintedanib resistance in FGFR1-driven small cell lung cancer: role of endothelin-A receptor-activated ABCB1 expression. Oncotarget, 2016, 7, 50161-50179.	1.8	19
23	Chronic arsenic trioxide exposure leads to enhanced aggressiveness via Met oncogene addiction in cancer cells. Oncotarget, 2016, 7, 27379-27393.	1.8	8
24	Applicability of HIN-1, MGMT and RASSF1A promoter methylation as biomarkers for detecting field cancerization in breast cancer. Breast Cancer Research, 2015, 17, 125.	5.0	39
25	Development and validation of a TaqMan real-time PCR assay for the identification and quantification of roe deer (Capreolus capreolus) in food to detect food adulteration. Food Chemistry, 2015, 178, 319-326.	8.2	41
26	Duplex real-time PCR assay for the simultaneous determination ofÂtheÂroe deer (Capreolus capreolus) and deer (sum of fallow deer, redÂdeer and sika deer) content in game meat products. Food Control, 2015, 57, 370-376.	5.5	23
27	Development and validation of a triplex real-time PCR assay for the simultaneous detection of three mustard species and three celery varieties in food. Food Chemistry, 2015, 184, 46-56.	8.2	9
28	Validation and comparison of two commercial ELISA kits and three in-house developed real-time PCR assays for the detection of potentially allergenic mustard in food. Food Chemistry, 2015, 174, 75-81.	8.2	12
29	Authenticity control of game meat products – A single method to detect and quantify adulteration of fallow deer (Dama dama), red deer (Cervus elaphus) and sika deer (Cervus nippon) by real-time PCR. Food Chemistry, 2015, 170, 508-517.	8.2	34
30	High resolution melting (HRM) analysis of DNA – Its role and potential in food analysis. Food Chemistry, 2014, 158, 245-254.	8.2	135
31	Development and validation of a duplex real-time PCR assay for the simultaneous detection of three mustard species (Sinapis alba, Brassica nigra and Brassica juncea) in food. Food Chemistry, 2014, 153, 66-73.	8.2	11
32	Validation and comparison of a sandwich ELISA, two competitive ELISAs and a real-time PCR method for the detection of lupine in food. Food Chemistry, 2013, 141, 407-418.	8.2	22
33	Development and validation of a real-time PCR method for the simultaneous detection of black mustard (Brassica nigra) and brown mustard (Brassica juncea) in food. Food Chemistry, 2013, 138, 348-355.	8.2	23
34	Development and Validation of Two Competitive ELISAs for the Detection of Potentially Allergenic Lupine (Lupinus Species) in Food. Food Analytical Methods, 2013, 6, 248-257.	2.6	9
35	Development and validation of a duplex real-time PCR method for the simultaneous detection of celery and white mustard in food. Food Chemistry, 2013, 141, 229-235.	8.2	13
36	Comparison of protocols for DNA extraction from long-term preserved formalin fixed tissues. Analytical Biochemistry, 2013, 439, 152-160.	2.4	51

#	Article	IF	CITATIONS
37	Sample clean-up by sol–gel immunoaffinity chromatography for the determination of bisphenol A in food and urine. Methods, 2012, 56, 186-191.	3.8	14

Development and validation of a novel real-time PCR method for the detection of celery (Apium) Tj ETQq0 0 0 rgBT $\frac{10}{8.2}$ CVerlock $\frac{10}{24}$ Tf 50 7

39	Development and validation of a sandwich ELISA for the determination of potentially allergenic lupine in food. Food Chemistry, 2012, 130, 759-766.	8.2	29
40	Impact of ozonation on the genotoxic activity of tertiary treated municipal wastewater. Water Research, 2011, 45, 3681-3691.	11.3	48
41	Sol–gel immunoaffinity chromatography for the clean up of ochratoxin A contaminated grains. Journal of Chromatography A, 2011, 1218, 7627-7633.	3.7	7
42	Determination of ochratoxin A in grains by immuno-ultrafiltration and HPLC-fluorescence detection after postcolumn derivatisation in an electrochemical cell. Analytical and Bioanalytical Chemistry, 2011, 400, 2615-2622.	3.7	14
43	Expression, Purification and Crystallization of Wheat Profilin (Tri a 12). Croatica Chemica Acta, 2011, 84, 419-422.	0.4	0
44	Development and validation of a sandwich ELISA for the determination of potentially allergenic sesame (Sesamum indicum) in food. Analytical and Bioanalytical Chemistry, 2010, 398, 1735-1745.	3.7	31
45	Determination of deoxynivalenol in organic and conventional food and feed by sol–gel immunoaffinity chromatography and HPLC–UV detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 187-193.	2.3	36

 $_{46}$ Development and Validation of a Real-Time PCR Method for the Detection of White Mustard (Sinapis) Tj ETQq0 0 0.rgBT /Overlock 10 Tr

47	Development and Validation of an Indirect Competitive Enzyme Linked-Immunosorbent Assay for the Determination of Potentially Allergenic Sesame <i>(Sesamum indicum)</i> in Food. Journal of Agricultural and Food Chemistry, 2010, 58, 1434-1441.	5.2	32
48	Immunoâ€ultrafiltration as a new strategy in sample cleanâ€up of aflatoxins. Journal of Separation Science, 2009, 32, 1729-1739.	2.5	19
49	Co-isolation of deoxynivalenol and zearalenone with sol–gel immunoaffinity columns for their determination in wheat and wheat products. Journal of Chromatography A, 2009, 1216, 5828-5837.	3.7	25
50	Development and Validation of a Duplex Real-Time PCR Method To Simultaneously Detect Potentially Allergenic Sesame and Hazelnut in Food. Journal of Agricultural and Food Chemistry, 2009, 57, 2126-2134.	5.2	49
51	Development of a selective sample clean-up method based on immuno-ultrafiltration for the determination of deoxynivalenol in maize. Journal of Chromatography A, 2008, 1202, 111-117.	3.7	27

Development of a Real-Time PCR Method To Detect Potentially Allergenic Sesame ($\langle i \rangle$ Sesamum) Tj ETQq0 0 0 rgBT_/Overlock 10 Tf 50 1

53	Selective Sample Cleanup by Reusable Solâ^Gel Immunoaffinity Columns for Determination of Deoxynivalenol in Food and Feed Samples. Analytical Chemistry, 2007, 79, 710-717.	6.5	40
54	Sample clean-up with sol–gel enzyme and immunoaffinity columns for the determination of bisphenol A in human urine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 850, 361-369.	2.3	40

MARGIT CICHNA-MARKL

#	Article	IF	CITATIONS
55	Determination of bisphenol A in canned fish by sol–gel immunoaffinity chromatography, HPLC and fluorescence detection. European Food Research and Technology, 2007, 224, 629-634.	3.3	38
56	Sample clean-up by sol-gel immunoaffinity chromatography for determination of chloramphenicol in shrimp. Journal of Sol-Gel Science and Technology, 2007, 41, 175-183.	2.4	13
57	Selective sample preparation with bioaffinity columns prepared by the sol–gel method. Journal of Chromatography A, 2006, 1124, 167-180.	3.7	31
58	Determination of bisphenol A in wine by sol-gel immunoaffinity chromatography, HPLC and fluorescence detection. Food Additives and Contaminants, 2006, 23, 1227-1235.	2.0	49
59	Sample preparation including sol–gel immunoaffinity chromatography for determination of bisphenol A in canned beverages, fruits and vegetables. Journal of Chromatography A, 2005, 1062, 189-198.	3.7	54
60	Analysis of Phytoestrogens in Foods Using Sol-Gel Enzyme Columns for Sample Preparation. Journal of Sol-Gel Science and Technology, 2005, 35, 211-220.	2.4	5
61	Development of a New Clean-up Method for the Determination of 5-methyl-tetrahydrofolate in Milk Samples Using a Sol-Gel β-Lactoglobulin Column. Journal of Sol-Gel Science and Technology, 2005, 36, 275-283.	2.4	3
62	Determination of 18 nucleobases, nucleosides and nucleotides in human peripheral blood mononuclear cells by isocratic solvent-generated ion-pair chromatography. Analytica Chimica Acta, 2003, 481, 245-253.	5.4	15
63	Determination of fifteen nucleotides in cultured human mononuclear blood and umbilical vein endothelial cells by solvent generated ion-pair chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 787, 381-391.	2.3	29
64	On-line coupling of sol–gel-generated immunoaffinity columns with high-performance liquid chromatography. Journal of Chromatography A, 2001, 919, 51-58.	3.7	41