Sachiko Matsushita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1772547/publications.pdf

Version: 2024-02-01

141 papers 1,583

³⁹⁴⁴²¹ 19 h-index 34 g-index

148 all docs

148 docs citations

148 times ranked 1861 citing authors

#	Article	IF	CITATIONS
1	In-Situ Observation of Redox Reactions in Ge-Sensitised Thermal Cells. Bulletin of the Chemical Society of Japan, 2022, 95, 813-818.	3.2	1
2	Antiviral and antifungal activities of lanthanum molybdate and copper molybdate. Journal of the Ceramic Society of Japan, 2022, 130, 370-375.	1.1	6
3	Semiconductor-Sensitized Thermal Cells Operated Under 100 \hat{A}° C. ECS Meeting Abstracts, 2022, MA2022-01, 141-141.	0.0	O
4	Effect of titanium substitution on the improvement of the thermal expansion properties of Zr2S0.9P2O12- \hat{l} . Ceramics International, 2021, 47, 10197-10200.	4.8	4
5	Preparation of cerium molybdates and their antiviral activity against bacteriophage \hat{l} and SARS-CoV-2. Materials Letters, 2021, 290, 129510.	2.6	21
6	Transparent porous La ₂ Mo ₂ O ₉ thin film preparation and antibacterial and antiviral activities. Journal of the Ceramic Society of Japan, 2021, 129, 485-488.	1.1	2
7	Role of the ions in the Ge/(CuCl, CuCl2 and LiCl)/FTO-sensitized thermal cell. Journal of Electroanalytical Chemistry, 2021, 895, 115413.	3.8	3
8	Active Micromixer of Microfluids via Plasmonic Marangoni Convection. Bulletin of the Chemical Society of Japan, 2021, 94, 2003-2010.	3.2	2
9	Decomposition of 2-naphthol in water and antiviral activity by CoO <i>_x</i> modified (Ce _{0.8} Bi _{0.2})O _{2â^î^alt;/sub> and (Ce_{0.8},La_{0.2})O_{2â^î^alt;/sub> in the dark or}}	1.1	4
10	Silver plasmonic colour change due to chemical/mechanical reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127221.	4.7	0
11	Experimental and theoretical investigation of WO modification effects on the photocatalytic activity of titanium-substituted hydroxyapatite. Applied Catalysis B: Environmental, 2020, 264, 118516.	20.2	12
12	Plasmonic photothermal synthesis of ZnO microspheres on Au/SiO2 nanostructures. Journal of Applied Physics, 2020, 128, 133105.	2.5	3
13	Effects of cerium and tungsten substitution on antiviral and antibacterial properties of lanthanum molybdate. Materials Science and Engineering C, 2020, 117, 111323.	7.3	29
14	Aluminium metal–insulator–metal structure fabricated by the bottom-up approach. Nanoscale Advances, 2020, 2, 2271-2275.	4.6	6
15	Sensitized "thermal―cell: a new heat conversion system to electricity. , 2020, , .		0
16	Negative thermal expansion in $\hat{l}\pm -Zr2SP2O12$ based on phase transition- and framework-type mechanisms. NPG Asia Materials, 2020, 12, .	7.9	15
17	Processing of transparent superhydrophobic films using cerium oxide particles with different aspect ratios. Journal of the Ceramic Society of Japan, 2020, 128, 210-216.	1.1	1
18	In-situ Temperature Measurement of Local Photothermal Conversion. Chemistry Letters, 2020, 49, 469-472.	1.3	3

#	Article	IF	CITATIONS
19	Fermi Level Dependence of a Working Electrode on the Open Circuit Voltage in a Sensitized Thermal Cell. Chemistry Letters, 2020, 49, 1013-1016.	1.3	7
20	Can CuFeS2 be used in a sensitized thermal cell?. Materials Today Energy, 2020, 17, 100469.	4.7	4
21	Preparation and properties of transparent solid–liquid hybrid materials using porous silica with silicone oil or ionic liquid. Materials Research Bulletin, 2020, 130, 110902.	5.2	2
22	Liquid and gas separation abilities of carbon membranes synthesized using hydrothermal method. Journal of the Ceramic Society of Japan, 2020, 128, 918-921.	1.1	2
23	Local structure investigation of WO <i>_x</i> cluster modified on titanium-substituted hydroxyapatite for promoting charge separation under UV illumination. Journal of the Ceramic Society of Japan, 2020, 128, 798-804.	1.1	2
24	Fog-harvesting performance of hydrophobic zinc oxide nanorods combined with nanoscale roughness on the topmost surface. Journal of the Ceramic Society of Japan, 2020, 128, 847-854.	1.1	1
25	(Invited) Mechanism of a Sensitized Thermal Cell. ECS Meeting Abstracts, 2020, MA2020-02, 3093-3093.	0.0	0
26	The Electrodes Distance Dependance of Battery Performance in Sensitized Thermal Cell. ECS Meeting Abstracts, 2020, MA2020-02, 3668-3668.	0.0	0
27	Influence of semiconductor crystallinity on a \hat{l}^2 -FeSi2 sensitized thermal cell. Solid-State Electronics, 2019, 158, 70-74.	1.4	9
28	Decomposition of 2-naphthol in water and antibacterial property by NiO and CeO <i>_x</i> modified TiO ₂ in the dark or under visible light. Journal of the Ceramic Society of Japan, 2019, 127, 688-695.	1.1	3
29	A sensitized thermal cell recovered using heat. Journal of Materials Chemistry A, 2019, 7, 18249-18256.	10.3	9
30	Preparation of hydrophobic La2Mo2O9 ceramics with antibacterial and antiviral properties. Journal of Hazardous Materials, 2019, 378, 120610.	12.4	36
31	Preparation and decomposition activity of MnO -modified (Ce0.73, Bi0.27)O2-δ on 2-naphthol in water in the dark or under visible light. Materials Chemistry and Physics, 2019, 233, 346-352.	4.0	7
32	Ag ₂ S-Sensitized Thermal Cell. Journal of Physical Chemistry C, 2019, 123, 12135-12141.	3.1	10
33	Preparation and photocatalytic activity of Mo-modified Ti-doped HAp. Applied Catalysis B: Environmental, 2019, 243, 448-454.	20.2	14
34	Temperature Dependence of a Perovskite-Sensitized Solar Cell: A Sensitized "Thermal―Cell. ACS Applied Energy Materials, 2019, 2, 13-18.	5.1	14
35	Photocatalytic activity of Zr2(WO4)(PO4)2. Ceramics International, 2019, 45, 1430-1433.	4.8	1
36	(Invited) Sensitized "Thermal" Cell. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
37	Gold Nanocups Fabricated Using Two-Dimensional Colloidal Crystals and Simulation of Their Optical Trapping Force. Bulletin of the Chemical Society of Japan, 2018, 91, 405-409.	3.2	8
38	Comparative study of the dynamic hydrophobicity of fluoroalkylsilane coatings tilted at acute and obtuse angles. Journal of Coatings Technology Research, 2018, 15, 891-898.	2.5	3
39	Decomposition of 2-naphthol in water by TiO ₂ modified with SnO <i>_x</i> or (Mn, Sn)O <i>_x</i> and MnO <i>_x</i> Journal of the Ceramic Society of Japan, 2018, 126, 122-127.	1.1	4
40	Surface potential on gold nanodisc arrays fabricated on silicon under light irradiation. Surface Science, 2018, 672-673, 62-67.	1.9	2
41	Sliding of water–glycerol mixture droplets on hydrophobic solid–liquid bulk composites using Ti plates with a fibrous TiO2 layer. Journal of Materials Science, 2018, 53, 1157-1166.	3.7	3
42	Anti-Bacterial and Photocatalytic Activities of (Mo _{0.5} , W _{0.5})O ₃ with Cu(Mo _{0.5} , W _{0.5})O ₄ Prepared by Impregnation Method and Mechanochemical Processing. Journal of the Japan Society of Colour Material, 2018, 91, 89-93.	0.1	2
43	Crystal face dependence of the decomposition of 2-naphthol in water under dark condition by rutile modified with MnO <i>_x</i> . Journal of the Ceramic Society of Japan, 2018, 126, 737-742.	1.1	3
44	Direct observation of the morphology and peeling behavior of poly(vinyl alcohol) derivatives in water by scanning probe microscopy. Journal of the Ceramic Society of Japan, 2018, 126, 839-842.	1.1	0
45	Decomposition of 2-Naphthol in Water by Brookite-Type TiO ₂ Modified with MnO <i>_x</i> and CeO <i>_y</i> Under Dark Condition. Journal of the Japan Society of Colour Material, 2018, 91, 98-102.	0.1	0
46	Solvothermal preparation and gas permeability of an IRMOF-3 membrane. Microporous and Mesoporous Materials, 2017, 241, 218-225.	4.4	10
47	Redox reactions by thermally excited charge carriers: towards sensitized thermal cells. Materials Horizons, 2017, 4, 649-656.	12.2	15
48	Thermal and electrical properties of methylammonium lead iodide perovskite compact before and after phase transition. Materials Research Innovations, 2017, , 1 -4.	2.3	5
49	Spontaneous Interfacial Tension Changes at the Interface of Metal Chloride Nitrobenzene Solution and Aqueous Stearyltrimethylammonium Chloride Solution: the Role of Metal Ions. Bulletin of the Chemical Society of Japan, 2017, 90, 491-499.	3.2	1
50	Optical performance of Au hemispheric sub-microstructure on polystyrene quadrumer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 51-56.	4.7	0
51	Droplet viscosity effects on dynamic hydrophobicity of a solid–liquid bulk composite prepared from porous glass. Journal of Materials Science, 2017, 52, 595-604.	3.7	8
52	Preparation of visible light photocatalyst by interface reaction between tungsten-molybdenum oxide and copper clusters. Materials Letters, 2017, 186, 135-137.	2.6	4
53	Effects of storage atmosphere and surface roughness on the hydrophobicity of Gd ₂ 0 ₃ thin film and sintered body. Journal of the Ceramic Society of Japan, 2017, 125, 638-642.	1.1	4
54	TiO ₂ Periodic Structures Fabricated via Top-down and Bottom-up Approaches with a Viewpoint of Photonic Crystal. Electrochemistry, 2016, 84, 681-687.	1.4	1

#	Article	IF	CITATIONS
55	Decomposition of 2-naphthol in water by TiO2 modified with MnO and CeO. Materials Chemistry and Physics, 2016, 183, 37-43.	4.0	16
56	Comparative study on visible light photocatalytic activity of Fe-modified TiO ₂ powders. Journal of the Ceramic Society of Japan, 2016, 124, 781-786.	1.1	2
57	Preparation and properties of Zr 2 MoP 2 O 12 ceramics with negative thermal expansion. Materials and Design, 2016, 112, 11-16.	7.0	10
58	Metal Nanostructures Fabricated by the Difference of Interfacial Energy at a Dielectric/Metal Interface. Bulletin of the Chemical Society of Japan, 2016, 89, 369-374.	3.2	4
59	Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid. Journal of Materials Science, 2016, 51, 1066-1073.	3.7	5
60	Surface modification of porous alumina filters for CO2 separation using silane coupling agents. Journal of Membrane Science, 2016, 497, 216-220.	8.2	12
61	Hierarchical Bimodal Mesoporous Structure Modified with Ni Nanoparticles through One-Pot Process for Effective Carbon Dioxide Methanation. Bulletin of the Chemical Society of Japan, 2015, 88, 1301-1307.	3.2	2
62	Adhesion and Friction Force on Various Smooth Hydrophobic Silane Coatings. Chemistry Letters, 2015, 44, 683-684.	1.3	1
63	Comparison of photocatalytic activity and surface friction force variation on Ti-doped hydroxyapatite and anatase under UV illumination. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 311, 160-165.	3.9	17
64	Processing of porous spherical Co-doped SiO2/Cu-grafted TiO2 hybrid particles for the decomposition of gaseous acetaldehyde in the dark and under visible light. Materials Letters, 2015, 139, 397-400.	2.6	2
65	Microfabrication for a polystyrene quadrupole by template-assisted self-assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 75-80.	4.7	2
66	Preparation of AlOOH/Al2O3 porous ceramics having CO2/N2 gas selectivity of less than 1. Ceramics International, 2015, 41, 7759-7765.	4.8	3
67	Simple fabrication of micro-polygons and micro-honeycombs utilizing thermal deformation of monolayer colloidal crystals during reactive ion etching. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 486, 1-5.	4.7	2
68	Preparation and hydrophobicity of solid–liquid bulk composite using porous glass and fluorinated oil. Journal of Materials Science, 2015, 50, 7760-7769.	3.7	5
69	Single-cell Trapping Using Microwell Arrays Fabricated from Self-assembled Particle Monolayers. Molecular Crystals and Liquid Crystals, 2014, 603, 248-255.	0.9	1
70	Static and dynamic hydrophobicity of alumina-based porous ceramics impregnated with fluorinated oil. Journal of Materials Research, 2014, 29, 1546-1555.	2.6	14
71	Angled etching of (001) rutile Nb–TiO2substrate using SF6-based capacitively coupled plasma reactive ion etching. Japanese Journal of Applied Physics, 2014, 53, 06JF02.	1.5	6
72	Pore size dependence of self-assembled type photonic crystal on dye-sensitized solar cells efficiency utilising Chlorine e6. Journal of Porous Materials, 2014, 21, 165-176.	2.6	9

#	Article	IF	CITATIONS
73	Gas separation using Knudsen and surface diffusion II: Effects of surface modification of epoxy/porous SiO ₂ composite. Journal of Asian Ceramic Societies, 2014, 2, 190-194.	2.3	9
74	Investigation of droplet jumping on superhydrophobic coatings during dew condensation by the observation from two directions. Applied Surface Science, 2014, 315, 212-221.	6.1	68
75	Comparative study of photoinduced wettability conversion between [PW12O40]3â^'/brookite and [SiW12O40]4â^'/brookite hybrid films. Materials Chemistry and Physics, 2014, 144, 327-334.	4.0	21
76	Gas separation using Knudsen and surface diffusion I: Preparation of epoxy/porous SiO2 composite. Microporous and Mesoporous Materials, 2014, 183, 201-206.	4.4	3
77	Comparative study of the impact and sliding behavior of water droplets on two different hydrophobic silane coatings. Applied Surface Science, 2014, 292, 990-996.	6.1	21
78	Defective Black TiO ₂ Synthesized via Anodization for Visible-Light Photocatalysis. ACS Applied Materials & Samp; Interfaces, 2014, 6, 1385-1388.	8.0	207
79	Preparation and Photocatalytic Activity of [PW12O40]3^ ^minus;-Grafted Anatase Powder from Selective Leaching of BaTiO3. Journal of the Japan Society of Colour Material, 2014, 87, 267-271.	0.1	0
80	Sliding of Water Droplets on Smooth Hydrophobic Silane Coatings with Regular Triangle Hydrophilic Regions. Langmuir, 2013, 29, 9269-9275.	3.5	38
81	SiO2–Au core–shell petal-like structure with controlled bridge length. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 930-936.	4.7	4
82	Effect of partial UV illumination on a mixture of water and a methylene blue solution in a microchannel coated with TiO2. Applied Surface Science, 2013, 265, 925-928.	6.1	2
83	Preparation and photocatalytic activity of porous spherical TiO2 particles comprised of H3PW12O40 in hydrophobic nanopores. Journal of Materials Science, 2013, 48, 2290-2298.	3.7	6
84	Adsorption and adhesion of poly(vinyl alcohol) and poly(ammonium acrylate) as organic additives for wet mold processing of Al2O3. Ceramics International, 2013, 39, 3857-3864.	4.8	7
85	Preparation and gas permeability of the surface-modified porous Al ₂ O ₃ ceramic filter for CO ₂ gas separation. Journal of Asian Ceramic Societies, 2013, 1, 65-70.	2.3	19
86	Preparation and gaseous acetaldehyde decomposition of porous spherical Co-doped SiO2/TiO2 hybrid particles. Materials Letters, 2013, 107, 185-188.	2.6	5
87	Spontaneous interfacial tension changes at the interface of a ZnCl2 nitrobenzene solution and aqueous stearyltrimethylammonium chloride solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 429, 31-37.	4.7	1
88	Ultrasonication effects on the visible-light photocatalytic activity of Au-modified TiO2 powder. Materials Letters, 2013, 90, 79-82.	2.6	4
89	Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask. Proceedings of SPIE, 2013, , .	0.8	0
90	Preparation of Mesoporous Silica Monoliths Doped with Titanium Clusters. Chemistry Letters, 2013, 42, 854-856.	1.3	2

#	Article	IF	CITATIONS
91	Preparation of a porous magnetic filter for O ₂ gas concentration. Journal of the Ceramic Society of Japan, 2013, 121, 313-316.	1.1	2
92	SF ₆ -Based Deep Reactive Ion Etching of (001) Rutile TiO ₂ Substrate for Photonic Crystal Structure with Wide Complete Photonic Band Gap. Japanese Journal of Applied Physics, 2012, 51, 098002.	1.5	10
93	Simulation Design for Rutile-TiO2 Nanostructures with a Large Complete-Photonic Bandgap in Electrolytes. Crystals, 2012, 2, 1483-1491.	2.2	3
94	Wetting Mode Transition of Water Droplets by Electrowetting on Highly Hydrophobic Surfaces Coated with Two Different Silanes. Chemistry Letters, 2012, 41, 23-25.	1.3	2
95	Preparation and visible-light photocatalytic activity of Cu-grafted rutile fine powder from selective leaching of BaTiO ₃ . Journal of the Ceramic Society of Japan, 2012, 120, 483-489.	1.1	3
96	Photocatalytic activity and photoinduced hydrophilicity of brookite–heteropolyacid hybrid films. Applied Catalysis A: General, 2012, 445-446, 274-279.	4.3	4
97	Wetting mode transition of nanoliter scale water droplets during evaporation on superhydrophobic surfaces with random roughness structure. Applied Surface Science, 2012, 258, 2378-2383.	6.1	20
98	Six-rayed star-like nanostructures in prospective plasmonic devices. Chemical Communications, 2012, 48, 1668-1670.	4.1	3
99	Activation of the spontaneous motion of a nitrobenzene droplet by chlorobenzene blending. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395, 233-239.	4.7	10
100	Anion-specific effects on the interaction forces between Al2O3 surfaces and dispersibility of Al2O3 colloids in electrolyte solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 233-237.	4.7	4
101	Preparation and visible-light photocatalytic activity of Au- and Cu-modified TiO2 powders. Materials Letters, 2012, 82, 174-177.	2.6	41
102	Preparation of porous spherical ZrO2–SiO2 composite particles using templating and its solid acidity by H2SO4 treatment. Journal of Materials Science, 2012, 47, 341-349.	3.7	10
103	SF6-Based Deep Reactive Ion Etching of (001) Rutile TiO2Substrate for Photonic Crystal Structure with Wide Complete Photonic Band Gap. Japanese Journal of Applied Physics, 2012, 51, 098002.	1.5	2
104	Self-Assembled Monolayers Using Large-Size Polystyrene Particles. Molecular Crystals and Liquid Crystals, 2011, 539, 33/[373]-39/[379].	0.9	2
105	Sliding of Water Droplets on Hydrophobic Surfaces with Various Hydrophilic Region Sizes. Langmuir, 2011, 27, 7307-7313.	3.5	44
106	Enhanced light diffraction from self-assembled double-layer colloidal crystals. Journal of Applied Physics, $2011,110,$	2. 5	7
107	Wettability conversion and surface friction force variation of polycrystalline rutile ceramics under UV illumination. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 64-69.	3.9	12
108	Preparation and visible-light photocatalytic activity of Au-supported porous CeO2 spherical particles using templating. Materials Letters, 2011, 65, 3051-3054.	2.6	21

#	Article	IF	CITATIONS
109	Photocatalytic activity and its stacking order dependence of transparent 12 tungsto(VI) phosphoric acid-brookite hybrid films. Applied Catalysis A: General, 2011, 399, 22-27.	4.3	2
110	Ring Structures Prepared by Self-Assembled Particle Layers. Molecular Crystals and Liquid Crystals, 2011, 539, 266/[606]-274/[614].	0.9	4
111	Comparison of the Photoelectrochemical Characteristics of Dye-Sensitized Inverse-Opal Electrodes Prepared by Various Liquid-Phase Methods. Journal of New Materials for Electrochemical Systems, 2011, 14, 229-236.	0.6	2
112	Full-photonic-bandgap structures for prospective dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 2398-2403.	5. 2	15
113	The Control of the Particle Self-Assembly on Solid Surface. Journal of the Japan Society of Colour Material, 2010, 84, 7-11.	0.1	0
114	Electric Current Generation by Camphor Boatsâ^—. Molecular Crystals and Liquid Crystals, 2009, 504, 27-34.	0.9	1
115	Induced-current-generated System Using the Chemomechanical Transduction at a Nitrobenzene/Water Interface. Chemistry Letters, 2009, 38, 110-111.	1.3	3
116	Calculation of Photonic Energy Bands of TiO ₂ Hollow Spherical Arrays. Journal of Nanoscience and Nanotechnology, 2009, 9, 185-189.	0.9	5
117	Fabrication of polymeric particles composed of two-dimensionally self-assembled nanoparticles by use of a microporous film as a template. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 630-635.	4.7	7
118	Calculation of photonic energy bands of self-assembled-type TiO2 photonic crystals as dye-sensitized solar battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 617-620.	4.7	9
119	Two-Dimensional Colloidal Crystals. Journal of the Society of Powder Technology, Japan, 2008, 45, 312-318.	0.1	1
120	Rapid Fabrication of a Smooth Hollow-Spheres Array. Bulletin of the Chemical Society of Japan, 2007, 80, 1226-1228.	3.2	8
121	Self-Organized Hierarchy Structures Composed of Honeycomb-Like Polymer Films and Spider-Web-Like Particle Structures. Molecular Crystals and Liquid Crystals, 2007, 463, 93/[375]-99/[381].	0.9	0
122	One-Step Preparation of Hierarchical Structures Using a Dissipative Process. Journal of the Society of Japanese Women Scientists, 2007, 8, 26-32.	0.0	0
123	Three-Dimensional Self-Assemblies of Nanoparticles. , 2006, , 119-155.		0
124	Light-propagation patterns in freestanding two-dimensional colloidal crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 315-319.	4.7	18
125	Photochemically functional photonic crystals prepared by using a two-dimensional particle-array template. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 15-17.	4.7	19
126	Coupling of wrinkle patterns to microsphere-array lithographic patterns. Soft Matter, 2005, 1, 227.	2.7	60

#	Article	IF	Citations
127	Influence of substrate on self-assembled photonic crystal. Chemical Communications, 2004, , 506.	4.1	13
128	Hierarchical honeycomb structures utilized a dissipative process. Synthetic Metals, 2004, 147, 237-240.	3.9	19
129	FLEXIBLE TWO-DIMENSIONAL FINE-PARTICLE ARRAYS AND THEIR PHOTONIC CHARACTERS. Molecular Crystals and Liquid Crystals, 2003, 406, 111-118.	0.9	2
130	Sub-Microstructures Formed by Means of Reactive Ion Etching in Multilayers of Two-Dimensional Fine-Particle Arrays. Chemistry Letters, 2002, 31, 524-525.	1.3	7
131	Periodic Submicrocylinder Diamond Surfaces Using Two-Dimensional Fine Particle Arrays. Langmuir, 2002, 18, 8282-8287.	3.5	50
132	Stable Two-Dimensional Fine-Particle Arrays in Solution. Langmuir, 2001, 17, 988-992.	3 . 5	12
133	Fluorescence Specific Micro Patterns in Two-Dimensional Ordered Arrays Composed of Polystyrene Fine Particles. Studies in Surface Science and Catalysis, 2001, , 845-848.	1.5	1
134	Preparation of Periodic Microstructured Diamond Surfaces. Chemistry Letters, 2000, 29, 534-535.	1.3	15
135	Light Propagation in Composite Two-Dimensional Arrays of Polystyrene Spherical Particles. Langmuir, 2000, 16, 636-642.	3.5	35
136	Observation of Light Propagation in Single Layers of Composite Two-Dimensional Arrays. Langmuir, 2000, 16, 1180-1184.	3.5	12
137	New Mesostructured Porous TiO2Surface Prepared Using a Two-Dimensional Array-Based Template of Silica Particles. Langmuir, 1998, 14, 6441-6447.	3 . 5	137
138	Preparation of a New Nanostructured TiO2Surface Using a Two-Dimensional Array-Based Template. Chemistry Letters, 1997, 26, 925-926.	1.3	36
139	Distribution of Components in Composite Two-Dimensional Arrays of Latex Particles and Evaluation in Terms of the Fractal Dimension. Langmuir, 1997, 13, 2582-2584.	3.5	47
140	Effect of tin substitution on the chemical composition and thermal expansion properties of Zr2SP2O12. Journal of Asian Ceramic Societies, 0, , 1-10.	2.3	3
141	Electrolyte Thickness Dependence upon Ge-Sensitized Thermal Cells. Energy & Electrolyte Thickness Dependence upon Ge-Sensitized Thermal Cells.	5.1	3