
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1771976/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5286-5291.	7.1	533
2	Genetics and Pathogenesis of Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2002, 13, 2384-2398.	6.1	510
3	Hematopoietic Stem Cells Contribute to the Regeneration of Renal Tubules after Renal Ischemia-Reperfusion Injury in Mice. Journal of the American Society of Nephrology: JASN, 2003, 14, 1188-1199.	6.1	387
4	Intrarenal cells, not bone marrow–derived cells, are the major source for regeneration in postischemic kidney. Journal of Clinical Investigation, 2005, 115, 1756-1764.	8.2	379
5	Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nature Cell Biology, 2010, 12, 1115-1122.	10.3	330
6	Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nature Genetics, 2009, 41, 793-799.	21.4	313
7	A transcriptional network in polycystic kidney disease. EMBO Journal, 2004, 23, 1657-1668.	7.8	303
8	Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Human Molecular Genetics, 2008, 17, 1578-1590.	2.9	300
9	Smad2 Protects against TGF-β/Smad3-Mediated Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2010, 21, 1477-1487.	6.1	293
10	Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nature Genetics, 2013, 45, 1004-1012.	21.4	290
11	Epithelial-Specific Cre/lox Recombination in the Developing Kidney and Genitourinary Tract. Journal of the American Society of Nephrology: JASN, 2002, 13, 1837-1846.	6.1	279
12	In utero diethylstilbestrol (DES) exposure alters Hox gene expression in the developing mullerian system. FASEB Journal, 2000, 14, 1101-1108.	0.5	249
13	Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. Journal of Clinical Investigation, 2004, 114, 1433-1443.	8.2	247
14	Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1. Human Molecular Genetics, 2008, 17, 1505-1516.	2.9	243
15	Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. American Journal of Physiology - Renal Physiology, 2008, 294, F542-F553.	2.7	241
16	Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression. Proceedings of the United States of America, 2004, 101, 2392-2397.	7.1	230
17	Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy, 2012, 8, 826-837.	9.1	228
18	Kidney-Targeted Birt-Hogg-Dube Gene Inactivation in a Mouse Model: Erk1/2 and Akt-mTOR Activation, Cell Hyperproliferation, and Polycystic Kidneys. Journal of the National Cancer Institute, 2008, 100, 140-154.	6.3	223

#	Article	IF	CITATIONS
19	Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney International, 2012, 82, 537-547.	5.2	181
20	Targeted Inactivation of Fh1 Causes Proliferative Renal Cyst Development and Activation of the Hypoxia Pathway. Cancer Cell, 2007, 11, 311-319.	16.8	158
21	Sex Steroids Mediate HOXA11 Expression in the Human Peri-Implantation Endometrium ¹ . Journal of Clinical Endocrinology and Metabolism, 1999, 84, 1129-1135.	3.6	155
22	Mutation of hepatocyte nuclear factor–1β inhibits Pkhd1 gene expression and produces renal cysts in mice. Journal of Clinical Investigation, 2004, 113, 814-825.	8.2	150
23	Pod-1, a mesoderm-specific basic-helix-loop-helix protein expressed in mesenchymal and glomerular epithelial cells in the developing kidney. Mechanisms of Development, 1998, 71, 37-48.	1.7	148
24	microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nature Communications, 2017, 8, 14395.	12.8	147
25	miR-17â^¼92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10765-10770.	7.1	144
26	A mitotic transcriptional switch in polycystic kidney disease. Nature Medicine, 2010, 16, 106-110.	30.7	140
27	Advances in the pathogenesis and treatment of polycystic kidney disease. Current Opinion in Nephrology and Hypertension, 2009, 18, 99-106.	2.0	128
28	Cystic Renal Neoplasia Following Conditional Inactivation of Apc in Mouse Renal Tubular Epithelium. Journal of Biological Chemistry, 2005, 280, 3938-3945.	3.4	124
29	Polycystin-2 and phosphodiesterase 4C are components of a ciliary A-kinase anchoring protein complex that is disrupted in cystic kidney diseases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10679-10684.	7.1	117
30	Loss of Oriented Cell Division Does not Initiate Cyst Formation. Journal of the American Society of Nephrology: JASN, 2010, 21, 295-302.	6.1	116
31	CXCR4/CXCL12 Hyperexpression Plays a Pivotal Role in the Pathogenesis of Lupus. Journal of Immunology, 2009, 182, 4448-4458.	0.8	109
32	A Minimal Ksp-Cadherin Promoter Linked to a Green Fluorescent Protein Reporter Gene Exhibits Tissue-Specific Expression in the Developing Kidney and Genitourinary Tract. Journal of the American Society of Nephrology: JASN, 2002, 13, 1824-1836.	6.1	106
33	Cloning and Kidney Cell-specific Activity of the Promoter of the Murine Renal Na-K-Cl Cotransporter Gene. Journal of Biological Chemistry, 1996, 271, 9666-9674.	3.4	98
34	Mutation of hepatocyte nuclear factor–1β inhibits Pkhd1 gene expression and produces renal cysts in mice. Journal of Clinical Investigation, 2004, 113, 814-825.	8.2	96
35	Isolation and cDNA Cloning of Ksp-cadherin, a Novel Kidney-specific Member of the Cadherin Multigene Family. Journal of Biological Chemistry, 1995, 270, 17594-17601.	3.4	95
36	Deregulated Expression of the Homeobox Gene Cux-1 in Transgenic Mice Results in Downregulation of p27kip1 Expression during Nephrogenesis, Glomerular Abnormalities, and Multiorgan Hyperplasia. Developmental Biology, 2002, 245, 157-171.	2.0	88

#	Article	IF	CITATIONS
37	Proteolytic Cleavage and Nuclear Translocation of Fibrocystin Is Regulated by Intracellular Ca2+ and Activation of Protein Kinase C. Journal of Biological Chemistry, 2006, 281, 34357-34364.	3.4	85
38	Roles of HNF-1β in kidney development and congenital cystic diseases. Kidney International, 2005, 68, 1944-1947.	5.2	84
39	Triptolide Reduces Cystogenesis in a Model of ADPKD. Journal of the American Society of Nephrology: JASN, 2008, 19, 1659-1662.	6.1	84
40	Collecting duct-specific Rh C glycoprotein deletion alters basal and acidosis-stimulated renal ammonia excretion. American Journal of Physiology - Renal Physiology, 2009, 296, F1364-F1375.	2.7	83
41	MicroRNAs Regulate Renal Tubule Maturation through Modulation of Pkd1. Journal of the American Society of Nephrology: JASN, 2012, 23, 1941-1948.	6.1	81
42	Role of the Hepatocyte Nuclear Factor-1β (HNF-1β) C-terminal Domain in Pkhd1 (ARPKD) Gene Transcription and Renal Cystogenesis. Journal of Biological Chemistry, 2005, 280, 10578-10586.	3.4	77
43	Impaired sodium excretion and increased blood pressure in mice with targeted deletion of renal epithelial insulin receptor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6469-6474.	7.1	75
44	Expression of a cut-related homeobox gene in developing and polycystic mouse kidney. Kidney International, 1996, 50, 453-461.	5.2	73
45	Primary Structure, Neural-specific Expression, and Chromosomal Localization of , a Second Murine Homeobox Gene Related to. Journal of Biological Chemistry, 1996, 271, 22624-22634.	3.4	68
46	New insights into the role of HNF-1β in kidney (patho)physiology. Pediatric Nephrology, 2019, 34, 1325-1335.	1.7	60
47	Mutations of HNF-1Î ² inhibit epithelial morphogenesis through dysregulation of SOCS-3. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20386-20391.	7.1	59
48	Kidney cysts, pancreatic cysts, and biliary disease in a mouse model of autosomal recessive polycystic kidney disease. Pediatric Nephrology, 2008, 23, 733-741.	1.7	56
49	Renal tubular cell spliced X-box binding protein 1 (Xbp1s) has a unique role in sepsis-induced acute kidney injury and inflammation. Kidney International, 2019, 96, 1359-1373.	5.2	56
50	Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2007, 18, 1371-1373.	6.1	54
51	HNF-1β Regulates Transcription of the PKD Modifier Gene Kif12. Journal of the American Society of Nephrology: JASN, 2009, 20, 41-47.	6.1	54
52	Basolateral expression of the ammonia transporter family member Rh C glycoprotein in the mouse kidney. American Journal of Physiology - Renal Physiology, 2009, 296, F543-F555.	2.7	53
53	Genetic Basis of Prune Belly Syndrome: Screening for <i>HNF1β</i> Gene. Journal of Urology, 2012, 187, 272-278.	0.4	53
54	Renal and Bone Marrow Cells Fuse after Renal Ischemic Injury. Journal of the American Society of Nephrology: JASN, 2007, 18, 3067-3077.	6.1	50

#	Article	IF	CITATIONS
55	Ksp-cadherin gene promoter. II. Kidney-specific activity in transgenic mice. American Journal of Physiology - Renal Physiology, 1999, 277, F599-F610.	2.7	48
56	The Role for HNF-1β-Targeted Collectrin in Maintenance of Primary Cilia and Cell Polarity in Collecting Duct Cells. PLoS ONE, 2007, 2, e414.	2.5	48
57	Activated renal tubular Wnt/β-catenin signalingÂtriggers renal inflammation duringÂoverload proteinuria. Kidney International, 2018, 93, 1367-1383.	5.2	47
58	Mechanism of Fibrosis in HNF1B-Related Autosomal Dominant Tubulointerstitial Kidney Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 2493-2509.	6.1	47
59	Kidney-specific inactivation of Ofd1 leads to renal cystic disease associated with upregulation of the mTOR pathway. Human Molecular Genetics, 2010, 19, 2792-2803.	2.9	46
60	Immunochemical characterization of Na ⁺ /H ⁺ exchanger isoform NHE4. American Journal of Physiology - Renal Physiology, 1998, 275, F510-F517.	2.7	43
61	Regulation of kidney-specific Ksp-cadherin gene promoter by hepatocyte nuclear factor-1β. American Journal of Physiology - Renal Physiology, 2002, 283, F839-F851.	2.7	43
62	Transcription Factor Hepatocyte Nuclear Factor-1β (HNF-1β) Regulates MicroRNA-200 Expression through a Long Noncoding RNA. Journal of Biological Chemistry, 2015, 290, 24793-24805.	3.4	42
63	Loss of transcriptional activation of the potassium channel Kir5.1 by HNF1β drives autosomal dominant tubulointerstitial kidney disease. Kidney International, 2017, 92, 1145-1156.	5.2	41
64	Interstitial microRNA miR-214 attenuates inflammation and polycystic kidney disease progression. JCI Insight, 2020, 5, .	5.0	39
65	Increased hedgehog signaling in postnatal kidney results in aberrant activation of nephron developmental programs. Human Molecular Genetics, 2011, 20, 4155-4166.	2.9	38
66	Planar cell polarity genes Celsr1 and Vangl2 are necessary for kidney growth, differentiation, and rostrocaudal patterning. Kidney International, 2016, 90, 1274-1284.	5.2	37
67	Adenylyl cyclase 5 deficiency reduces renal cyclic AMP and cyst growth in an orthologous mouse model of polycystic kidney disease. Kidney International, 2018, 93, 403-415.	5.2	36
68	A Unique Variant of a Homeobox Gene Related to Drosophila cut is Expressed in Mouse Testis1. Biology of Reproduction, 1996, 55, 731-739.	2.7	33
69	Loss of Glis2/NPHP7 causes kidney epithelial cell senescence and suppresses cyst growth in the Kif3a mouse model of cystic kidney disease. Kidney International, 2016, 89, 1307-1323.	5.2	33
70	Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1. Journal of Molecular Medicine, 2014, 92, 1045-1056.	3.9	32
71	Long noncoding RNA Hoxb3os is dysregulated in autosomal dominant polycystic kidney disease and regulates mTOR signaling. Journal of Biological Chemistry, 2018, 293, 9388-9398.	3.4	32
72	Hepatocyte Nuclear Factor–1β Regulates Urinary Concentration and Response to Hypertonicity. Journal of the American Society of Nephrology: JASN, 2017, 28, 2887-2900.	6.1	31

#	Article	IF	CITATIONS
73	Chapter 4 Molecular Properties and Physiological Roles of the Renal Na+-H+ Exchanger. Current Topics in Membranes and Transport, 1986, 26, 57-75.	0.6	25
74	Ksp-cadherin gene promoter. I. Characterization and renal epithelial cell-specific activity. American Journal of Physiology - Renal Physiology, 1999, 277, F587-F598.	2.7	25
75	Tissue-specific regulation of the mouse <i>Pkhd1</i> (ARPKD) gene promoter. American Journal of Physiology - Renal Physiology, 2014, 307, F356-F368.	2.7	25
76	Cloning, sequence, and tissue distribution of a rabbit renal Na+/H+ exchanger transcript. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1129, 105-108.	2.4	24
77	Kidney-Specific Gene Targeting. Journal of the American Society of Nephrology: JASN, 2004, 15, 2237-2239.	6.1	23
78	Transcription Factor Hepatocyte Nuclear Factor–1β Regulates Renal Cholesterol Metabolism. Journal of the American Society of Nephrology: JASN, 2016, 27, 2408-2421.	6.1	23
79	Role of transcription factor hepatocyte nuclear factor- $1^{\hat{l}^2}$ in polycystic kidney disease. Cellular Signalling, 2020, 71, 109568.	3.6	22
80	Searching for Stem/Progenitor Cells in the Adult Mouse Kidney. Journal of the American Society of Nephrology: JASN, 2003, 14, 3290-3292.	6.1	21
81	Hepatocyte nuclear factor-1β regulates Wnt signaling through genome-wide competition with β-catenin/lymphoid enhancer binding factor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24133-24142.	7.1	19
82	Phylogenetically conserved sequences in the promoter of the rabbit sodium-hydrogen exchanger isoform 1 gene(NHE1/SLC9A1). Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1262, 159-163.	2.4	18
83	Zyxin regulates migration of renal epithelial cells through activation of hepatocyte nuclear factor-1β. American Journal of Physiology - Renal Physiology, 2013, 305, F100-F110.	2.7	18
84	Overview: Nonmammalian Organisms for Studies of Kidney Development and Disease. Journal of the American Society of Nephrology: JASN, 2005, 16, 296-298.	6.1	17
85	Innate Immune Signaling Contributes to Tubular Cell Senescence in the Glis2 Knockout Mouse Model of Nephronophthisis. American Journal of Pathology, 2020, 190, 176-189.	3.8	16
86	Arginine-specific modification of rabbit muscle phosphoglucose isomerase: Differences in the inactivation by phenylglyoxal and butanedione and in the protection by substrate analogs. Archives of Biochemistry and Biophysics, 1983, 221, 489-498.	3.0	15
87	Following the Expression of a Kidney-Specific Gene from Early Development to Adulthood. Nephron Experimental Nephrology, 2003, 94, e1-e6.	2.2	15
88	Inducible expression of kallikrein in renal tubular cells protects mice against spontaneous lupus nephritis. Arthritis and Rheumatism, 2013, 65, 780-791.	6.7	15
89	Expression of the basolateral Na–K–Cl cotransporter during mouse nephrogenesis and embryonic development. Gene Expression Patterns, 2006, 6, 1000-1006.	0.8	9
90	Generation and characterization of KsprtTA and KsptTA transgenic mice. Genesis, 2013, 51, 430-435.	1.6	9

#	Article	IF	CITATIONS
91	Filling the Holes in Cystic Kidney Disease Research. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1799-1801.	4.5	9
92	Advancing Nephrology. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 319-327.	4.5	7
93	Preparation of 6-1251-labeled amiloride derivatives. Analytical Biochemistry, 1988, 170, 63-67.	2.4	6
94	Hepatocyte nuclear factor 1β suppresses canonical Wnt signaling through transcriptional repression of lymphoid enhancer–binding factor 1. Journal of Biological Chemistry, 2020, 295, 17560-17572.	3.4	6
95	Elucidating the function of primary cilia by conditional gene inactivation. Current Opinion in Nephrology and Hypertension, 2005, 14, 373-377.	2.0	4
96	Gastrointestinal Amyloidosis Associated With Transthyretin Phe64Ser Mutation. American Journal of the Medical Sciences, 2007, 334, 219-221.	1.1	3
97	Unsuspected mediastinal hematoma diagnosed by computed tomography. The Journal of Computed Tomography, 1984, 8, 211-214.	0.1	2
98	Chapter 8 Structure and function of plasma membrane Na+ H+ exchangers. New Comprehensive Biochemistry, 1992, 21, 247-272.	0.1	1
99	Renal Dysgenesis. , 2009, , 463-493.		1
100	Framework From a Multidisciplinary Approach for Transitioning Variants of Unknown Significance From Clinical Genetic Testing in Kidney Disease to a Definitive Classification. Kidney International Reports, 2022, , .	0.8	0