List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1771764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visual competition. Nature Reviews Neuroscience, 2002, 3, 13-21.	10.2	1,305
2	Perception of Human Motion. Annual Review of Psychology, 2007, 58, 47-73.	17.7	765
3	Neural bases of binocular rivalry. Trends in Cognitive Sciences, 2006, 10, 502-511.	7.8	634
4	Brain Areas Active during Visual Perception of Biological Motion. Neuron, 2002, 35, 1167-1175.	8.1	618
5	A Primer on Binocular Rivalry, Including Current Controversies. Brain and Mind, 2001, 2, 5-38.	0.6	581
6	A neural theory of binocular rivalry Psychological Review, 1989, 96, 145-167.	3.8	565
7	Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nature Neuroscience, 2000, 3, 1153-1159.	14.8	483
8	Visual Recognition of Biological Motion is Impaired in Children With Autism. Psychological Science, 2003, 14, 151-157.	3.3	465
9	Psychophysical magic: rendering the visible â€`invisible'. Trends in Cognitive Sciences, 2005, 9, 381-388.	7.8	335
10	Fearful expressions gain preferential access to awareness during continuous flash suppression Emotion, 2007, 7, 882-886.	1.8	295
11	Perceptual consequences of centre–surround antagonism in visual motion processing. Nature, 2003, 424, 312-315.	27.8	284
12	Traveling waves of activity in primary visual cortex during binocular rivalry. Nature Neuroscience, 2005, 8, 22-23.	14.8	282
13	The psychophysical inquiry into binocular summation. Perception & Psychophysics, 1973, 14, 161-185.	2.3	277
14	Dynamics of travelling waves in visual perception. Nature, 2001, 412, 907-910.	27.8	254
15	Binocular vision. Vision Research, 2011, 51, 754-770.	1.4	211
16	Adaptation to invisible gratings and the site of binocular rivalry suppression. Nature, 1974, 249, 488-490.	27.8	205
17	Spatial zones of binocular rivalry in central and peripheral vision. Visual Neuroscience, 1992, 8, 469-478.	1.0	193
18	Visual Form Created Solely from Temporal Structure. Science, 1999, 284, 1165-1168.	12.6	193

#	Article	IF	CITATIONS
19	Strength of early visual adaptation depends on visual awareness. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4783-4788.	7.1	193
20	The Role of Frontal and Parietal Brain Areas in Bistable Perception. Journal of Neuroscience, 2011, 31, 10293-10301.	3.6	188
21	Neural Synergy Between Kinetic Vision and Touch. Psychological Science, 2004, 15, 397-402.	3.3	173
22	Depth of interocular suppression associated with continuous flash suppression, flash suppression, and binocular rivalry. Journal of Vision, 2006, 6, 6.	0.3	167
23	Cats Perceive Biological Motion. Psychological Science, 1993, 4, 54-57.	3.3	166
24	Weakened Center-Surround Interactions in Visual Motion Processing in Schizophrenia. Journal of Neuroscience, 2006, 26, 11403-11412.	3.6	162
25	What is Suppressed during Binocular Rivalry?. Perception, 1980, 9, 223-231.	1.2	159
26	Endogenous attention prolongs dominance durations in binocular rivalry. Journal of Vision, 2005, 5, 6.	0.3	142
27	Hierarchy of cortical responses underlying binocular rivalry. Nature Neuroscience, 2007, 10, 1048-1054.	14.8	142
28	Rival ideas about binocular rivalry. Vision Research, 1999, 39, 1447-1454.	1.4	139
29	Binocular rivalry suppression: Insensitive to spatial frequency and orientation change. Vision Research, 1974, 14, 687-692.	1.4	136
30	Learning to See Biological Motion: Brain Activity Parallels Behavior. Journal of Cognitive Neuroscience, 2004, 16, 1669-1679.	2.3	127
31	Visual features that vary together over time group together over space. Nature Neuroscience, 1998, 1, 160-164.	14.8	126
32	Visual Sensitivity Underlying Changes in Visual Consciousness. Current Biology, 2010, 20, 1362-1367.	3.9	123
33	Impaired visual recognition of biological motion in schizophrenia. Schizophrenia Research, 2005, 77, 299-307.	2.0	121
34	Grouping visual features during binocular rivalry. Vision Research, 1999, 39, 4341-4353.	1.4	120
35	Neural models of stereoscopic vision. Trends in Neurosciences, 1991, 14, 445-452.	8.6	115
36	Perception of Biological Motion. Perception, 1997, 26, 1539-1548.	1.2	113

#	Article	IF	CITATIONS
37	On the use of continuous flash suppression for the study of visual processing outside of awareness. Frontiers in Psychology, 2014, 5, 724.	2.1	113
38	Exogenous attention and endogenous attention influence initial dominance in binocular rivalry. Vision Research, 2006, 46, 1794-1803.	1.4	111
39	Deconstructing continuous flash suppression. Journal of Vision, 2012, 12, 8-8.	0.3	111
40	Multistable Perception and the Role of the Frontoparietal Cortex in Perceptual Inference. Annual Review of Psychology, 2018, 69, 77-103.	17.7	109
41	Neural strength of visual attention gauged by motion adaptation. Nature Neuroscience, 1999, 2, 1015-1018.	14.8	102
42	Negligible fronto-parietal BOLD activity accompanying unreportable switches in bistable perception. Nature Neuroscience, 2015, 18, 1672-1678.	14.8	97
43	Visual Motion Retards Alternations between Conflicting Perceptual Interpretations. Neuron, 2003, 39, 869-878.	8.1	94
44	Anisotropies in visual motion perception: a fresh look. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1998, 15, 2003.	1.5	93
45	Pupil size dynamics during fixation impact the accuracy and precision of video-based gaze estimation. Vision Research, 2016, 118, 48-59.	1.4	92
46	Experience-Driven Plasticity in Binocular Vision. Current Biology, 2010, 20, 1464-1469.	3.9	87
47	The interplay between stereopsis and structure from motion. Perception & Psychophysics, 1991, 49, 230-244.	2.3	86
48	The precedence of binocular fusion over binocular rivalry. Perception & Psychophysics, 1985, 37, 114-124.	2.3	85
49	A New Interocular Suppression Technique for Measuring Sensory Eye Dominance. , 2010, 51, 588.		85
50	A fresh look at interocular grouping during binocular rivalry. Vision Research, 2004, 44, 983-991.	1.4	84
51	Voluntary Action Influences Visual Competition. Psychological Science, 2007, 18, 1090-1098.	3.3	82
52	Direction repulsion in motion transparency. Visual Neuroscience, 1996, 13, 187-197.	1.0	81
53	The Role of Temporal Structure in Human Vision. Behavioral and Cognitive Neuroscience Reviews, 2005, 4, 21-42.	3.9	80
54	Perception of Biological Motion in Schizophrenia and Healthy Individuals: A Behavioral and fMRI Study. PLoS ONE, 2011, 6, e19971.	2.5	80

#	Article	IF	CITATIONS
55	V1 activity is reduced during binocular rivalry. Journal of Vision, 2002, 2, 4.	0.3	79
56	Semantic Analysis Does Not Occur in the Absence of Awareness Induced by Interocular Suppression. Journal of Neuroscience, 2011, 31, 13535-13545.	3.6	77
57	Binocular Rivalry and Motion Perception. Journal of Cognitive Neuroscience, 1998, 10, 46-60.	2.3	75
58	Eccentric perception of biological motion is unscalably poor. Vision Research, 2005, 45, 1935-1943.	1.4	75
59	Binocular rivalry and semantic processing: Out of sight, out of mind Journal of Experimental Psychology: Human Perception and Performance, 1983, 9, 807-815.	0.9	75
60	Can binocular rivalry reveal neural correlates of consciousness?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130211.	4.0	73
61	Another means for measuring the motion aftereffect. Vision Research, 1993, 33, 1589-1592.	1.4	72
62	On utrocular discrimination. Perception & Psychophysics, 1979, 26, 53-68.	2.3	67
63	Inattention Abolishes Binocular Rivalry. Psychological Science, 2012, 23, 1159-1167.	3.3	65
64	Coarse spatial scales constrain the range of binocular fusion on fine scales. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1991, 8, 229.	1.5	63
65	On the inhibitory nature of binocular rivalry suppression Journal of Experimental Psychology: Human Perception and Performance, 1979, 5, 315-323.	0.9	61
66	Interactions between global motion and local binocular rivalry. Vision Research, 1998, 38, 637-644.	1.4	61
67	What causes alternations in dominance during binocular rivalry?. Attention, Perception, and Psychophysics, 2010, 72, 179-186.	1.3	61
68	Monocular Perceptual Deprivation from Interocular Suppression Temporarily Imbalances Ocular Dominance. Current Biology, 2017, 27, 884-889.	3.9	59
69	Temporal perturbations of binocular rivalry. Perception & Psychophysics, 1990, 48, 593-602.	2.3	58
70	How Context Influences Predominance during Binocular Rivalry. Perception, 2002, 31, 813-824.	1.2	57
71	Interocular suppression differentially affects achromatic and chromatic mechanisms. Attention, Perception, and Psychophysics, 2009, 71, 403-411.	1.3	57
72	Interocular transfer of visual aftereffects Journal of Experimental Psychology: Human Perception and Performance, 1981, 7, 367-381.	0.9	56

#	Article	IF	CITATIONS
73	Adaptation aftereffects to facial expressions suppressed from visual awareness. Journal of Vision, 2010, 10, 24-24.	0.3	55
74	What constitutes an efficient reference frame for vision?. Nature Neuroscience, 2002, 5, 1010-1015.	14.8	54
75	Do recognizable figures enjoy an advantage in binocular rivalry?. Journal of Experimental Psychology: Human Perception and Performance, 1992, 18, 1158-1173.	0.9	53
76	A neural network model of kinetic depth. Visual Neuroscience, 1991, 6, 219-227.	1.0	52
77	Binocular Disparity Processing with Opposite-Contrast Stimuli. Perception, 1995, 24, 33-47.	1.2	52
78	Adaptive center-surround interactions in human vision revealed during binocular rivalry. Vision Research, 2006, 46, 599-604.	1.4	42
79	Spatial suppression promotes rapid figure-ground segmentation of moving objects. Nature Communications, 2019, 10, 2732.	12.8	42
80	On the Variety of Percepts Associated with Dichoptic Viewing of Dissimilar Monocular Stimuli. Perception, 1992, 21, 47-62.	1.2	41
81	Normalization Regulates Competition for Visual Awareness. Neuron, 2012, 75, 531-540.	8.1	41
82	Individual differences in sensory eye dominance reflected in the dynamics of binocular rivalry. Vision Research, 2017, 141, 40-50.	1.4	40
83	The Interaction between Binocular Rivalry and Negative Afterimages. Current Biology, 2005, 15, 1740-1744.	3.9	39
84	Neural Integration of Information Specifying Human Structure from Form, Motion, and Depth. Journal of Neuroscience, 2010, 30, 838-848.	3.6	39
85	Binocular Rivalry Disrupts Visual Priming. Psychological Science, 1998, 9, 299-302.	3.3	38
86	Fine Temporal Properties of Center-Surround Interactions in Motion Revealed by Reverse Correlation. Journal of Neuroscience, 2006, 26, 2614-2622.	3.6	38
87	Callosal connections of primary visual cortex predict the spatial spreading of binocular rivalry across the visual hemifields. Frontiers in Human Neuroscience, 2011, 5, 161.	2.0	38
88	The Development of Sensitivity to Biological Motion in Noise. Perception, 2006, 35, 647-657.	1.2	37
89	A monocular contribution to stimulus rivalry. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8337-8344.	7.1	37
90	Broad tuning for spatial frequency of neural mechanisms underlying visual perception of coherent motion. Nature, 1994, 371, 793-796.	27.8	36

#	Article	IF	CITATIONS
91	The effects of transcranial magnetic stimulation on visual rivalry. Journal of Vision, 2007, 7, 2.	0.3	36
92	Stimulus Fractionation by Interocular Suppression. Frontiers in Human Neuroscience, 2011, 5, 135.	2.0	36
93	Periodic perturbations producing phase-locked fluctuations in visual perception. Journal of Vision, 2009, 9, 8-8.	0.3	35
94	Visually guided attention is neutralized when informative cues are visible but unperceived. Vision Research, 1993, 33, 2057-2064.	1.4	34
95	Selective impairment in visual perception of biological motion in obsessive-compulsive disorder. Depression and Anxiety, 2008, 25, E15-E25.	4.1	34
96	On the coexistence of stereopsis and binocular rivalry. Vision Research, 1991, 31, 1191-1203.	1.4	33
97	Organization of Binocular Pathways: Modeling and Data Related to Rivalry. Neural Computation, 1991, 3, 44-53.	2.2	33
98	Dichoptic reading: The role of meaning in binocular rivalry. Perception & Psychophysics, 1988, 44, 133-141.	2.3	31
99	Neural synergy in visual grouping: when good continuation meets common fate. Vision Research, 2001, 41, 2057-2064.	1.4	30
100	A Dissociation of Attention and Awareness in Phase-sensitive but Not Phase-insensitive Visual Channels. Journal of Cognitive Neuroscience, 2010, 22, 2326-2344.	2.3	30
101	Physics embedded in visual perception of three-dimensional shape from motion. Nature Neuroscience, 2004, 7, 921-922.	14.8	29
102	Dissociation between Neural Signatures of Stimulus and Choice in Population Activity of Human V1 during Perceptual Decision-Making. Journal of Neuroscience, 2014, 34, 2725-2743.	3.6	28
103	What Can Be "Perceived―in the Absence of Visual Awareness?. Current Directions in Psychological Science, 1997, 6, 157-162.	5.3	27
104	Motion Perception Getting Better with Age?. Neuron, 2005, 45, 325-327.	8.1	27
105	Modulation of spatiotemporal dynamics of binocular rivalry by collinear facilitation and pattern-dependent adaptation. Journal of Vision, 2010, 10, 3-3.	0.3	27
106	Vision in schizophrenia: why it matters. Frontiers in Psychology, 2015, 6, 41.	2.1	27
107	Does visual attention drive the dynamics of bistable perception?. Attention, Perception, and Psychophysics, 2016, 78, 1861-1873.	1.3	27
108	Preserved gain control for luminance contrast during binocular rivalry suppression. Vision Research, 2004, 44, 3065-3071.	1.4	26

#	Article	IF	CITATIONS
109	The efficiency of biological motion perception. Perception & Psychophysics, 2008, 70, 88-95.	2.3	26
110	Suppression During Binocular Rivalry Broadens Orientation Tuning. Psychological Science, 2009, 20, 1348-1355.	3.3	25
111	An Integrated Framework of Spatiotemporal Dynamics of Binocular Rivalry. Frontiers in Human Neuroscience, 2011, 5, 88.	2.0	23
112	Stimulus Motion Propels Traveling Waves in Binocular Rivalry. PLoS ONE, 2007, 2, e739.	2.5	22
113	On the accuracy of surface reconstruction from disparity interpolation. Vision Research, 1995, 35, 949-960.	1.4	21
114	Spatial grouping in human vision: Temporal structure trumps temporal synchrony. Vision Research, 2007, 47, 219-230.	1.4	21
115	Contextual modulations of center-surround interactions in motion revealed with the motion aftereffect. Journal of Vision, 2008, 8, 9.	0.3	20
116	Individual differences in the temporal dynamics of binocular rivalry and stimulus rivalry. Psychonomic Bulletin and Review, 2015, 22, 476-482.	2.8	20
117	Detection of temporal structure depends on spatial structure. Vision Research, 1999, 39, 3033-3048.	1.4	19
118	Perceiving object motion using vision and touch. Cognitive, Affective and Behavioral Neuroscience, 2004, 4, 201-207.	2.0	19
119	Aging and perception of visual form from temporal structure Psychology and Aging, 2008, 23, 181-189.	1.6	19
120	Comparing Biological Motion Perception in Two Distinct Human Societies. PLoS ONE, 2011, 6, e28391.	2.5	19
121	Novel procedure for generating continuous flash suppression: Seurat meets Mondrian. Journal of Vision, 2019, 19, 1.	0.3	19
122	Biological Motion Perception, Brain Responses, and Schizotypal Personality Disorder. JAMA Psychiatry, 2016, 73, 260.	11.0	18
123	Subjective contours and binocular rivalry suppression. Vision Research, 2003, 43, 1533-1540.	1.4	17
124	Slow and steady, not fast and furious: Slow temporal modulation strengthens continuous flash suppression. Consciousness and Cognition, 2018, 58, 10-19.	1.5	17
125	The Occipital Face Area Is Causally Involved in Facial Viewpoint Perception. Journal of Neuroscience, 2015, 35, 16398-16403.	3.6	15
126	Cognitive Neuroscience: Integration of Sight and Sound outside of Awareness?. Current Biology, 2015, 25, R157-R159.	3.9	15

#	Article	IF	CITATIONS
127	Detection and discrimination of optical flow components. Japanese Psychological Research, 1998, 40, 19-30.	1.1	14
128	Persistent Biases in Binocular Rivalry Dynamics within the Visual Field. Vision (Switzerland), 2017, 1, 18.	1.2	14
129	Binocular rivalry suppression disrupts recovery from motion adaptation. Visual Neuroscience, 1992, 9, 143-148.	1.0	13
130	Melodic sound enhances visual awareness of congruent musical notes, but only if you can read music. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8493-8498.	7.1	13
131	Spatial Spread of Interocular Suppression is Guided by Stimulus Configuration. Perception, 2009, 38, 215-231.	1.2	12
132	A new technique for generating disordered point-light animations for the study of biological motion perception. Journal of Vision, 2015, 15, 13.	0.3	12
133	Long-range traveling waves of activity triggered by local dichoptic stimulation in V1 of behaving monkeys. Journal of Neurophysiology, 2015, 113, 277-294.	1.8	12
134	Probing Electrophysiological Indices of Perceptual Awareness across Unisensory and Multisensory Modalities. Journal of Cognitive Neuroscience, 2018, 30, 814-828.	2.3	11
135	Binocular Rivalry and Perceptual Ambiguity. , 0, , .		10
136	Detecting contrast changes in invisible patterns during binocular rivalry. Vision Research, 2010, 50, 2421-2429.	1.4	9
137	Individual differences in continuous flash suppression: Potency and linkages to binocular rivalry dynamics. Vision Research, 2019, 160, 10-23.	1.4	9
138	The time course of binocular rivalry during the phases of the menstrual cycle. Journal of Vision, 2016, 16, 22.	0.3	8
139	Evidence for neural rhythms embedded within binocular rivalry. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14811-14812.	7.1	8
140	The Perceptual Magic of Binocular Rivalry. Current Directions in Psychological Science, 2022, 31, 139-146.	5.3	8
141	Mixed messengers, unified message: spatial grouping from temporal structure. Vision Research, 2005, 45, 1021-1030.	1.4	7
142	Illusory colors promote interocular grouping during binocular rivalry. Psychonomic Bulletin and Review, 2007, 14, 356-362.	2.8	7
143	Enhancement of bistable perception associated with visual stimulus rivalry. Psychonomic Bulletin and Review, 2008, 15, 586-591.	2.8	7
144	Contribution of a common ability in average and variability judgments. Psychonomic Bulletin and Review, 2022, 29, 108-115.	2.8	7

#	Article	IF	CITATIONS
145	Interocular interactions reveal the opponent structure of motion mechanisms. Vision Research, 2001, 41, 441-448.	1.4	6
146	Does direction of walking impact binocular rivalry between competing patterns of optic flow?. Attention, Perception, and Psychophysics, 2017, 79, 1182-1194.	1.3	6
147	Binocular rivalry suppression interferes with phase adaptation. Perception & Psychophysics, 1985, 38, 277-280.	2.3	5
148	Visual Alchemy: Stereoscopic Adaptation Produces Kinetic Depth from Random Noise. Perception, 1993, 22, 635-642.	1.2	5
149	Temporal Structure in the Input to Vision Can Promote Spatial Grouping. Lecture Notes in Computer Science, 2000, , 635-653.	1.3	5
150	Judging Relative Onsets and Offsets of Audiovisual Events. Vision (Switzerland), 2020, 4, 17.	1.2	4
151	The role of category- and exemplar-specific experience in ensemble processing of objects. Attention, Perception, and Psychophysics, 2021, 83, 1080-1093.	1.3	4
152	Minimizing rivalry in San Miniato. Trends in Cognitive Sciences, 2002, 6, 407-408.	7.8	3
153	Revisiting the Perceptual Reality of Synesthetic Color. , 2013, , .		3
154	Individual differences in the perception of biological motion and fragmented figures are not correlated. Frontiers in Psychology, 2013, 4, 795.	2.1	3
155	Binocular Rivalryâ~†. , 2017, , .		3
156	Battle of the Mondrians: Investigating the Role of Unpredictability in Continuous Flash Suppression. I-Perception, 2018, 9, 204166951879293.	1.4	3
157	Composite binocular perception from dichoptic stimulus arrays with similar ensemble information. Scientific Reports, 2018, 8, 8263.	3.3	3
158	Optics and neural adaptation jointly limit human stereovision. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	3
159	Congruent audio-visual stimulation during adaptation modulates the subsequently experienced visual motion aftereffect. Scientific Reports, 2019, 9, 19391.	3.3	2
160	Reconciling Rival Interpretations of Binocular Rivalry. , 2003, , 101-126.		2
161	Distributional analyses of individual differences in binocular rivalry dynamics. Journal of Vision, 2017, 17, 582.	0.3	2
162	Reflections on Eriksen's seminal essay on discrimination, performance and learning without awareness. Attention, Perception, and Psychophysics, 2021, 83, 546-557.	1.3	1

#	Article	IF	CITATIONS
163	Motion Processing in Human Visual Cortex. Frontiers in Neuroscience, 2003, , .	0.0	1
164	Visual Perception: Tracking the Elusive Footprints of Awareness. Current Biology, 2009, 19, R30-R32.	3.9	0
165	QnAs with Randolph Blake. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8320-8320.	7.1	0
166	Neural Activity Reflecting Perceptual Awareness of Biologically Relevant Events. Korean Journal of Cognitive and Biological Psychology, 2013, 25, 153-172.	0.0	0
167	Dissimilarity between feature ensembles triggers binocular rivalry without competing local features. Journal of Vision, 2017, 17, 1221.	0.3	Ο
168	Why are dynamic Mondrian patterns unusually effective in inducing interocular suppression?. Journal of Vision, 2017, 17, 140.	0.3	0
169	Low-level properties of dynamic Mondrians, not their predictability, empower continuous flash suppression. Journal of Vision, 2018, 18, 960.	0.3	0
170	Stimulus-specific learning facilitates ensemble processing of cars. Journal of Vision, 2019, 19, 32.	0.3	0
171	Can human stereopsis improve by making the eyes optically perfect?. Journal of Vision, 2019, 19, 130b.	0.3	0
172	BINOCULAR RIVALRY AND NEURAL DYNAMICS. Psichologija, 2008, 38, 7-18.	0.1	0