Chiara Milanese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1771103/publications.pdf

Version: 2024-02-01

31 papers	1,278 citations	18 h-index	477307 29 g-index
33	33	33	2536
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia. Cell Stem Cell, 2016, 19, 613-627.	11.1	277
2	MAPK/Erk-dependent phosphorylation of synapsin mediates formation of functional synapses and short-term homosynaptic plasticity. Journal of Cell Science, 2010, 123, 881-893.	2.0	101
3	Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson's Disease. Cell Reports, 2016, 15, 1866-1875.	6.4	93
4	Activation of the DNA damage response in vivo in synucleinopathy models of Parkinson's disease. Cell Death and Disease, 2018, 9, 818.	6.3	85
5	Hypokinesia and Reduced Dopamine Levels in Zebrafish Lacking \hat{l}^2 - and \hat{l}^31 -Synucleins. Journal of Biological Chemistry, 2012, 287, 2971-2983.	3.4	71
6	Single-Cell Redox Imaging Demonstrates a Distinctive Response of Dopaminergic Neurons to Oxidative Insults. Antioxidants and Redox Signaling, 2011, 15, 855-871.	5 . 4	70
7	Bioenergetic and proteolytic defects in fibroblasts from patients with sporadic Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1385-1394.	3.8	59
8	Evaluation of spontaneous propulsive movement as a screening tool to detect rescue of Parkinsonism phenotypes in zebrafish models. Neurobiology of Disease, 2011, 44, 9-18.	4.4	55
9	Phosphorylation by cAMP-dependent protein kinase is essential for synapsin-induced enhancement of neurotransmitter release in invertebrate neurons. Journal of Cell Science, 2004, 117, 5145-5154.	2.0	53
10	Decreased mitochondrial respiration in aneurysmal aortas of Fibulin-4 mutant mice is linked to PGC1A regulation. Cardiovascular Research, 2018, 114, 1776-1793.	3.8	47
11	Automated measurement of zebrafish larval movement. Journal of Physiology, 2011, 589, 3703-3708.	2.9	45
12	Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2066-2074.	3.8	44
13	Phosphorylation of synapsin domain A is required for post-tetanic potentiation. Journal of Cell Science, 2007, 120, 3228-3237.	2.0	43
14	DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering. Nature Communications, 2019, 10, 4887.	12.8	43
15	Nucleotide excision repair in chronic neurodegenerative diseases. DNA Repair, 2013, 12, 568-577.	2.8	25
16	TMX2 Is a Crucial Regulator of Cellular Redox State, and Its Dysfunction Causes Severe Brain Developmental Abnormalities. American Journal of Human Genetics, 2019, 105, 1126-1147.	6.2	25
17	Peripheral mitochondrial function correlates with clinical severity in idiopathic Parkinson's disease. Movement Disorders, 2019, 34, 1192-1202.	3.9	23
18	Mitochondrial Complex I Reversible S-Nitrosation Improves Bioenergetics and Is Protective in Parkinson's Disease. Antioxidants and Redox Signaling, 2018, 28, 44-61.	5.4	21

#	Article	IF	CITATIONS
19	Inhibition of Neurotransmitter Release by a Nonphysiological Target Requires Protein Synthesis and Involves cAMP-Dependent and Mitogen-Activated Protein Kinases. Journal of Neuroscience, 2004, 24, 5054-5062.	3.6	18
20	In vitro formation and activity-dependent plasticity of synapses between Helix neurons involved in the neural control of feeding and withdrawal behaviors. Neuroscience, 2005, 134, 1133-1151.	2.3	18
21	Bioenergetics in fibroblasts of patients with Huntington disease are associated with age at onset. Neurology: Genetics, 2018, 4, e275.	1.9	15
22	Endocytic iron trafficking and mitochondria in Parkinson's disease. International Journal of Biochemistry and Cell Biology, 2019, 110, 70-74.	2.8	15
23	F3/contactinâ€related proteins in <i>Helix pomatia</i> nervous tissue (HCRPs): Distribution and function in neurite growth and neurotransmitter release. Journal of Neuroscience Research, 2008, 86, 821-831.	2.9	11
24	Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson's disease. Current Opinion in Physiology, 2019, 9, 73-78.	1.8	7
25	Gender biased neuroprotective effect of Transferrin Receptor 2 deletion in multiple models of Parkinson's disease. Cell Death and Differentiation, 2021, 28, 1720-1732.	11.2	6
26	Characterization and role of <i>Helix</i> contactinâ€related proteins in cultured <i>Helix pomatia</i> neurons. Journal of Neuroscience Research, 2009, 87, 425-439.	2.9	2
27	Fibroblasts from skin biopsies as a tool for biomarker discovery in Parkinson׳s disease. Free Radical Biology and Medicine, 2014, 75, S10.	2.9	2
28	A perspective on DNA damage-induced potentiation of the pentose phosphate shunt and reductive stress in chemoresistance. Molecular and Cellular Oncology, 2020, 7, 1733383.	0.7	2
29	Phosphorylation of synapsin domain A is required for post-tetanic potentiation. Journal of Cell Science, 2007, 120, 3321-3321.	2.0	1
30	Inflammatory Niche Signalling Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Leukemic Evolution in Human Leukemia Predisposition Syndromes. Blood, 2016, 128, 428-428.	1.4	0
31	A33â€Differences in bioenergetic status in patient-derived fibroblast cells are associated with age of onset in huntington disease. , 2018, , .		0