
Titus Masese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1770468/publications.pdf Version: 2024-02-01

TITUS MASESE

#	Article	lF	CITATIONS
1	High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Scientific Reports, 2014, 4, 5622.	3.3	286
2	Rechargeable potassium-ion batteries with honeycomb-layered tellurates as high voltage cathodes and fast potassium-ion conductors. Nature Communications, 2018, 9, 3823.	12.8	190
3	Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution. Scientific Reports, 2016, 6, 26382.	3.3	123
4	MgFePO ₄ F as a feasible cathode material for magnesium batteries. Journal of Materials Chemistry A, 2014, 2, 11578-11582.	10.3	75
5	Improved Cyclic Performance of Lithium-Ion Batteries: An Investigation of Cathode/Electrolyte Interface via In Situ Total-Reflection Fluorescence X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 9538-9543.	3.1	60
6	A high voltage honeycomb layered cathode framework for rechargeable potassium-ion battery: P2-type K _{2/3} Ni _{1/3} Co _{1/3} Te _{1/3} O ₂ . Chemical Communications, 2019, 55, 985-988.	4.1	59
7	Sulfonylamideâ€Based Ionic Liquids for Highâ€Voltage Potassiumâ€Ion Batteries with Honeycomb Layered Cathode Oxides. ChemElectroChem, 2019, 6, 3901-3910.	3.4	57
8	Origin of Surface Coating Effect for MgO on LiCoO ₂ to Improve the Interfacial Reaction between Electrode and Electrolyte. Advanced Materials Interfaces, 2014, 1, 1400195.	3.7	56
9	Interfacial engineering enables Bi@C-TiO microspheres as superpower and long life anode for lithium-ion batteries. Nano Energy, 2018, 51, 137-145.	16.0	55
10	Vanadium phosphate as a promising high-voltage magnesium ion (de)-intercalation cathode host. RSC Advances, 2015, 5, 8598-8603.	3.6	54
11	Crystal Structural Changes and Charge Compensation Mechanism during Two Lithium Extraction/Insertion between Li ₂ FeSiO ₄ and FeSiO ₄ . Journal of Physical Chemistry C, 2015, 119, 10206-10211.	3.1	52
12	Relationship between Phase Transition Involving Cationic Exchange and Charge–Discharge Rate in Li2FeSiO4. Chemistry of Materials, 2014, 26, 1380-1384.	6.7	47
13	Honeycomb layered oxides: structure, energy storage, transport, topology and relevant insights. Chemical Society Reviews, 2021, 50, 3990-4030.	38.1	43
14	Grain-boundary-rich mesoporous NiTiO3 micro-prism as high tap-density, super rate and long life anode for sodium and lithium ion batteries. Energy Storage Materials, 2018, 13, 329-339.	18.0	40
15	Anti-site mixing governs the electrochemical performances of olivine-type MgMnSiO ₄ cathodes for rechargeable magnesium batteries. Physical Chemistry Chemical Physics, 2016, 18, 13524-13529.	2.8	39
16	Organic positive-electrode material utilizing both an anion and cation: a benzoquinone-tetrathiafulvalene triad molecule, Q-TTF-Q, for rechargeable Li, Na, and K batteries. New Journal of Chemistry, 2019, 43, 1626-1631.	2.8	38
17	Mitigating the polysulfides "shuttling―with TiO2 nanowires/nanosheets hybrid modified separators for robust lithium-sulfur batteries. Chemical Engineering Journal, 2020, 387, 124080.	12.7	37
18	Binder-free graphene/carbon nanotube/silicon hybrid grid as freestanding anode for high capacity lithium ion batteries. Composites Part A: Applied Science and Manufacturing, 2016, 84, 386-392.	7.6	32

TITUS MASESE

#	Article	IF	CITATIONS
19	Bendable Network Built with Ultralong Silica Nanowires as a Stable Separator for High-Safety and High-Power Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 34895-34903.	8.0	31
20	Mixed alkali-ion transport and storage in atomic-disordered honeycomb layered NaKNi2TeO6. Nature Communications, 2021, 12, 4660.	12.8	23
21	Stabilization of the Electronic Structure at the Cathode/Electrolyte Interface via MgO Ultra-thin Layer during Lithium-ions Insertion/Extraction. Electrochemistry, 2014, 82, 891-896.	1.4	21
22	Magnetism and ion diffusion in honeycomb layered oxideÂ\$\${hbox {K}_2hbox {Ni}_2hbox {TeO}_6}\$\$. Scientific Reports, 2020, 10, 18305.	3.3	21
23	High rate and thermally stable Mn-rich concentration-gradient layered oxide microsphere cathodes for lithium-ion batteries. Energy Storage Materials, 2016, 5, 205-213.	18.0	20
24	High-voltage honeycomb layered oxide positive electrodes for rechargeable sodium batteries. Chemical Communications, 2020, 56, 9272-9275.	4.1	18
25	An idealised approach of geometry and topology to the diffusion of cations in honeycomb layered oxide frameworks. Scientific Reports, 2020, 10, 13284.	3.3	17
26	Unveiling structural disorders in honeycomb layered oxide: Na2Ni2TeO6. Materialia, 2021, 15, 101003.	2.7	13
27	Topological Defects and Unique Stacking Disorders in Honeycomb Layered Oxide K ₂ Ni ₂ TeO ₆ Nanomaterials: Implications for Rechargeable Batteries. ACS Applied Nano Materials, 2021, 4, 279-287.	5.0	12
28	Local structural change in Li2FeSiO4 polyanion cathode material during initial cycling. Solid State Ionics, 2014, 262, 110-114.	2.7	11
29	Sulfur in Mesoporous Tungsten Nitride Foam Blocks: A Rational Lithium Polysulfide Confinement Experimental Design Strategy Augmented by Theoretical Predictions. ACS Applied Materials & Interfaces, 2019, 11, 20013-20021.	8.0	9
30	Implications of coordination chemistry to cationic interactions in honeycomb layered nickel tellurates. Computational Materials Science, 2022, 207, 111322.	3.0	9
31	A Potential Cathode Material for Rechargeable Potassiumâ€lon Batteries Inducing Manganese Cation and Oxygen Anion Redox Chemistry: Potassiumâ€Deficient K _{0.4} Fe _{0.5} Mn _{0.5} O ₂ . Energy Technology, 2020, 8, 2000039.	3.8	8
32	Reaction mechanism of electrochemical insertion/extraction of magnesium ions in olivine-type FePO4. Solid State Ionics, 2020, 349, 115311.	2.7	8
33	Silica Nanowires Reinforced with Poly(vinylidene fluoride oâ€hexafluoropropylene): Separator for Highâ€Performance Lithium Batteries. ChemNanoMat, 2022, 8, .	2.8	8
34	Enhanced Performance Induced by Phase Transition of Li ₂ FeSiO ₄ upon Cycling at High Temperature. ACS Applied Energy Materials, 2020, 3, 5722-5727.	5.1	7
35	Coronene: a high-voltage anion insertion and de-insertion cathode for potassium-ion batteries. New Journal of Chemistry, 2021, 45, 4921-4924.	2.8	7
36	A novel cationic-ordering fluoro-polyanionic cathode LiV0.5Fe0.5PO4F and its single phase Li+ insertion/extraction behaviour. RSC Advances, 2013, 3, 22935.	3.6	6

TITUS MASESE

#	Article	IF	CITATIONS
37	Cation Distributions and Magnetic Properties of Ferrispinel MgFeMnO ₄ . Inorganic Chemistry, 2020, 59, 17970-17980.	4.0	6
38	Cationic vacancies as defects in honeycomb lattices with modular symmetries. Scientific Reports, 2022, 12, 6465.	3.3	6
39	Relationship between Local Structure and Oxide Ionic Diffusion of Nd2NiO4+^ ^delta; with K2NiF4 Structure. Electrochemistry, 2014, 82, 875-879.	1.4	4
40	On local conservation of information content in Schwarzschild black holes. Journal of Physics Communications, 2022, 6, 041001.	1.2	4
41	Boosting the lithium-ion storage performance of dense MnCO3 microsphere anodes via Sb-substitution and construction of neural-like carbon nanotube networks. Journal of Applied Electrochemistry, 2018, 48, 1105-1113.	2.9	2
42	Electric Doubleâ€Layer Capacitors Based on Nonâ€Aqueous Electrolytes: A Comparative Study of Potassium and Quaternary Ammonium Salts. Batteries and Supercaps, 2020, 3, 392-396.	4.7	2
43	The road to potassium-ion batteries. , 2022, , 265-307.		1
44	A Potential Cathode Material for Rechargeable Potassiumâ€lon Batteries Inducing Manganese Cation and Oxygen Anion Redox Chemistry: Potassiumâ€Deficient K _{0.4} Fe _{0.5} Mn _{0.5} O ₂ . Energy Technology, 2020, 8, 2070064.	3.8	0