Gabriella Dobrowolny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1769563/publications.pdf

Version: 2024-02-01

37 papers 3,140 citations

279798 23 h-index 35 g-index

37 all docs

37 docs citations

37 times ranked

4281 citing authors

#	Article	IF	CITATIONS
1	Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nature Genetics, 2001, 27, 195-200.	21.4	985
2	Skeletal Muscle Is a Primary Target of SOD1G93A-Mediated Toxicity. Cell Metabolism, 2008, 8, 425-436.	16.2	435
3	Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. Journal of Cell Biology, 2005, 168, 193-199.	5. 2	319
4	Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1206-1210.	7.1	233
5	Effects of IGFâ€1 isoforms on muscle growth and sarcopenia. Aging Cell, 2019, 18, e12954.	6.7	146
6	Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission. PLoS ONE, 2012, 7, e33232.	2.5	144
7	Melatonin downâ€regulates <scp>MDM</scp> 2 gene expression and enhances p53 acetylation in <scp>MCF</scp> â€7 cells. Journal of Pineal Research, 2014, 57, 120-129.	7.4	81
8	Localized accumulation of oxidative stress causes muscle atrophy through activation of an autophagic pathway. Autophagy, 2009, 5, 527-529.	9.1	57
9	Muscle Expression of <i>SOD1^{G93A}</i> Triggers the Dismantlement of Neuromuscular Junction <i>via</i> PKC-Theta. Antioxidants and Redox Signaling, 2018, 28, 1105-1119.	5.4	56
10	Metabolic Changes Associated With Muscle Expression of SOD1G93A. Frontiers in Physiology, 2018, 9, 831.	2.8	50
11	Neuromuscular Junction as an Entity of Nerve-Muscle Communication. Cells, 2019, 8, 906.	4.1	50
12	Local expression of mlgf-1 modulates ubiquitin, caspase and CDK5 expression in skeletal muscle of an ALS mouse model. Neurological Research, 2008, 30, 131-136.	1.3	49
13	Biomonitoring of primary aluminium industry workers: detection of micronuclei and repairable DNA lesions by alkaline SCGE. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 516, 63-70.	1.7	43
14	Muscle atrophy induced by SOD1G93A expression does not involve the activation of caspase in the absence of denervation. Skeletal Muscle, 2011, 1, 3.	4.2	42
15	Molecular Insights into Muscle Homeostasis, Atrophy and Wasting. Current Genomics, 2018, 19, 356-369.	1.6	39
16	The neuroprotective effects of a locally acting IGF-1 isoform. Experimental Gerontology, 2007, 42, 76-80.	2.8	36
17	A longitudinal study defined circulating microRNAs as reliable biomarkers for disease prognosis and progression in ALS human patients. Cell Death Discovery, 2021, 7, 4.	4.7	36
18	Microenvironment Promotes Tumor Cell Reprogramming in Human Breast Cancer Cell Lines. PLoS ONE, 2013, 8, e83770.	2.5	36

#	Article	IF	Citations
19	Levetiracetam enhances the temozolomide effect on glioblastoma stem cell proliferation and apoptosis. Cancer Cell International, 2018, 18, 136.	4.1	34
20	IPLEX Administration Improves Motor Neuron Survival and Ameliorates Motor Functions in a Severe Mouse Model of Spinal Muscular Atrophy. Molecular Medicine, 2012, 18, 1076-1085.	4.4	30
21	Elucidating the Contribution of Skeletal Muscle Ion Channels to Amyotrophic Lateral Sclerosis in search of new therapeutic options. Scientific Reports, 2019, 9, 3185.	3.3	29
22	Muscle Expression of SOD1G93A Modulates microRNA and mRNA Transcription Pattern Associated with the Myelination Process in the Spinal Cord of Transgenic Mice. Frontiers in Cellular Neuroscience, 2015, 9, 463.	3.7	25
23	Paracrine Effects of IGF-1 Overexpression on the Functional Decline Due to Skeletal Muscle Disuse: Molecular and Functional Evaluation in Hindlimb Unloaded MLC/mlgf-1 Transgenic Mice. PLoS ONE, 2013, 8, e65167.	2.5	24
24	Age-Related Alterations at Neuromuscular Junction: Role of Oxidative Stress and Epigenetic Modifications. Cells, 2021, 10, 1307.	4.1	23
25	Neuromuscular magnetic stimulation counteracts muscle decline in ALS patients: results of a randomized, double-blind, controlled study. Scientific Reports, 2019, 9, 2837.	3.3	21
26	Repurposing of Trimetazidine for amyotrophic lateral sclerosis: A study in SOD1 ^{G93A} mice. British Journal of Pharmacology, 2022, 179, 1732-1752.	5.4	21
27	Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance. PLoS ONE, 2016, 11, e0160950.	2.5	19
28	Progressive impairment of CaV1.1 function in the skeletal muscle of mice expressing a mutant type 1 Cu/Zn superoxide dismutase (G93A) linked to amyotrophic lateral sclerosis. Skeletal Muscle, 2016, 6, 24.	4.2	15
29	Taurine Attenuates Catabolic Processes Related to the Onset of Sarcopenia. International Journal of Molecular Sciences, 2020, 21, 8865.	4.1	14
30	Postmitotic Expression of SOD1 ^{G93A} Gene Affects the Identity of Myogenic Cells and Inhibits Myoblasts Differentiation. Mediators of Inflammation, 2015, 2015, 1-14.	3.0	13
31	Taurine Administration Counteracts Aging-Associated Impingement of Skeletal Muscle Regeneration by Reducing Inflammation and Oxidative Stress. Antioxidants, 2022, 11, 1016.	5.1	11
32	Muscle Involvement and IGF-1 Signaling in Genetic Disorders: New Therapeutic Approaches. Endocrine Development, 2009, 14, 29-37.	1.3	8
33	R-Spondin 1/Dickkopf-1/Beta-Catenin Machinery Is Involved in Testicular Embryonic Angiogenesis. PLoS ONE, 2015, 10, e0124213.	2.5	6
34	Circulating myomiRs in Muscle Denervation: From Surgical to ALS Pathological Condition. Cells, 2021, 10, 2043.	4.1	6
35	Fenretinide Beneficial Effects on Amyotrophic Lateral Sclerosis-associated SOD1G93A Mutant Protein Toxicity: In Vitro and In Vivo Evidences. Neuroscience, 2021, 473, 1-12.	2.3	3
36	The Role of Skeletal Muscle in Neuromuscular Diseases: From Cellular and Molecular Players to Therapeutic Interventions. Cells, 2022, 11, 1207.	4.1	1

#	Article	IF	CITATIONS
37	Skeletal Muscle Is a Primary Target of SOD1G93A-Mediated Toxicity. Cell Metabolism, 2009, 9, 110.	16.2	O