
Sho Shirakata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1768461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Study of Doping Profile for the Site Selectively Znâ€Doped <i>p</i> â€type Cu(In,Ga)Se ₂ Thin Film for Solar Cell. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800890.	1.8	1
2	Xâ€Ray Fluorescence Holography Analysis of Local Structure in CuInSe ₂ and CuGaSe ₂ . Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800971.	1.8	5
3	Site selective doping of Zn for the <i>p</i> â€ŧype Cu(In,Ga)Se ₂ thin film for solar cell application. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, .	0.8	6
4	Local structure analysis of Cu(In,Ga)Se ₂ by Xâ€ray fluorescence holography. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1600171.	0.8	1
5	Preparation of europium-doped GaN and AlGaN films grown by radical-nitrogen-assisted compound-source MBE. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 837-840.	0.8	1
6	Photoluminescence characterization of Cu(In,Ga)Se ₂ solarâ€cell processes. Physica Status Solidi (B): Basic Research, 2015, 252, 1211-1218.	1.5	5
7	Deep absorption band in Cu(In,Ga)Se ₂ thin films and solar cells observed by transparent piezoelectric photothermal spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 584-587.	0.8	0
8	Impact of waterâ€rinse treatment on Cu ₂ ZnSnS ₄ studied by Xâ€ray absorption nearâ€edge structure analysis. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 721-724.	0.8	3
9	Photoluminescence characterization of surface degradation mechanism in Cu(In,Ga)Se ₂ thin films grown on Mo/soda lime glass substrate. Japanese Journal of Applied Physics, 2014, 53, 05FW11.	1.5	11
10	Characterization of Cu(In,Ga)Se2thin films and solar cells by photoacoustic spectroscopy. Japanese Journal of Applied Physics, 2014, 53, 05FW12.	1.5	3
11	Photoluminescence characterization of photovoltaic effect in ZnO/CdS/Cu(In,Ga)Se2 heterostructure. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1322-1327.	1.8	10
12	In situ ellipsometric study of the three-stage process in CulnSe2film deposition. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1005-1008.	0.8	1
13	Shape controllability and photoluminescence properties of ZnO nanorods grown by chemical bath deposition. Thin Solid Films, 2013, 549, 292-298.	1.8	10
14	Comparative study of optical properties of ZnO films and nanorods grown by atmosphericâ€pressure CVD and chemical bath deposition. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1580-1583.	0.8	2
15	Characterization of CIGS Solar Cell Process and Cell Properties. Journal of Smart Processing, 2013, 2, 230-235.	0.1	0
16	Characterization of Cu(In,Ga)Se ₂ Solar Cell Fabrication Process by Photoluminescence. Japanese Journal of Applied Physics, 2012, 51, 10NC13.	1.5	12
17	Structural and optical properties of ZnO films grown by atmospheric- pressure CVD methods using different source materials. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 509-511.	0.8	1
18	Near-band-edge photoluminescnce in Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 219-222.	6.2	16

SHO SHIRAKATA

#	Article	IF	CITATIONS
19	Impacts of pulsed-laser assisted deposition on CIGS thin films and solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 1463-1470.	6.2	35
20	Photoluminescence of Cu(In,Ga)Se2in the Solar Cell Preparation Process. Japanese Journal of Applied Physics, 2011, 50, 05FC02.	1.5	6
21	Effects of CdS buffer layers on photoluminescence properties of Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 988-992.	6.2	77
22	Photoluminescence and time-resolved photoluminescence in Cu(In,Ga)Se2thin films and solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1059-1062.	0.8	39
23	Photoluminescence properties of ZnSnP ₂ single crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1116-1119.	0.8	13
24	Possibility of Shape Control of ZnO Nanostructures Grown by Atmospheric-pressure CVD Utilizing Catalytic Materials. E-Journal of Surface Science and Nanotechnology, 2009, 7, 78-83.	0.4	5
25	Time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells. Thin Solid Films, 2007, 515, 6151-6154.	1.8	95
26	Structural, optical and electrical properties of CuInS2 thin films prepared by chemical spray pyrolysis. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2588-2591.	0.8	12
27	Structural and optical properties of polycrystalline MgxZn1–xO and ZnO:Mn films prepared by chemical spray pyrolysis. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2677-2680.	0.8	2
28	Studies of quantum levels in GalnNAs single quantum wells. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2680-2685.	1.8	2
29	Optical characterization of CuInSe2single crystals prepared by travelling heater method. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2897-2903.	1.8	8
30	Preparation of CuAlSe ₂ /CuGaSe ₂ Heterostructures by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2000, 39, 196.	1.5	1
31	Optical properties of CuGaSe2 and CuAlSe2 layers epitaxially grown on Cu(In0.04Ga0.96)Se2 substrates. Journal of Applied Physics, 2000, 87, 7294-7302.	2.5	17
32	Raman scattering and its hydrostatic pressure dependence in ZnGeP2 crystal. Journal of Applied Physics, 1999, 85, 3294-3300.	2.5	18
33	Room-Temperature Photoreflectance of CuAlxGa1-xSe2Alloys. Japanese Journal of Applied Physics, 1997, 36, 7160-7161.	1.5	20
34	Electroreflectance of CuInSe\$_{f 2}\$ Single Crystals. Japanese Journal of Applied Physics, 1997, 36, L543-L546.	1.5	27
35	Improved quality of CuGaSe2 and CuAlSe2 epilayers grown on CuGa0.96In0.04Se2 substrates. Applied Physics Letters, 1997, 71, 533-535.	3.3	12
36	Visible and Ultraviolet Photoluminescence from Cu–III–VI2Chalcopyrite Semiconductors Grown by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1997, 36, 1703-1714.	1.5	58

SHO SHIRAKATA

#	Article	IF	CITATIONS
37	Ultraviolet photoluminescence from CuAlS2 heteroepitaxial layers grown by lowâ€pressure metalorganic chemical vapor deposition. Applied Physics Letters, 1995, 66, 3513-3515.	3.3	22
38	Local structure of CuInSe2thin film studied by extended xâ€ray absorption fine structure. Journal of Applied Physics, 1994, 76, 7864-7869.	2.5	12
39	Photoreflectance Study of CuAlSe2Heteroepitaxial Layers. Japanese Journal of Applied Physics, 1993, 32, L167-L169.	1.5	25
40	Photoreflectance and Photoluminescence Studies of CuAlxGa1-xSe2Alloys. Japanese Journal of Applied Physics, 1993, 32, L1304-L1307.	1.5	21