

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1767963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Porphyrin-Co(III)-â€~Nitrene Radical' Species Relevant in Catalytic Nitrene Transfer Reactions. Journal of the American Chemical Society, 2015, 137, 5468-5479.	13.7	185
2	Asymmetric Radical Cyclopropanation of Alkenes with In Situ-Generated Donor-Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis. Journal of the American Chemical Society, 2017, 139, 1049-1052.	13.7	177
3	Highly Asymmetric Intramolecular Cyclopropanation of Acceptor-Substituted Diazoacetates by Co(II)-Based Metalloradical Catalysis: Iterative Approach for Development of New-Generation Catalysts. Journal of the American Chemical Society, 2011, 133, 15292-15295.	13.7	174
4	Regioselective Synthesis of Multisubstituted Furans via Metalloradical Cyclization of Alkynes with α-Diazocarbonyls: Construction of Functionalized α-Oligofurans. Journal of the American Chemical Society, 2012, 134, 19981-19984.	13.7	171
5	Enantioselective Cyclopropenation of Alkynes with Acceptor/Acceptor-Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis. Journal of the American Chemical Society, 2011, 133, 3304-3307.	13.7	142
6	Metalloradical Approach to 2 <i>H</i> -Chromenes. Journal of the American Chemical Society, 2014, 136, 1090-1096.	13.7	142
7	Effective Synthesis of Chiral <i>N</i> â€Fluoroaryl Aziridines through Enantioselective Aziridination of Alkenes with Fluoroaryl Azides. Angewandte Chemie - International Edition, 2013, 52, 5309-5313.	13.8	141
8	Enantioselective Radical Cyclization for Construction of 5-Membered Ring Structures by Metalloradical C–H Alkylation. Journal of the American Chemical Society, 2018, 140, 4792-4796.	13.7	120
9	Catalytic Radical Process for Enantioselective Amination of C(sp ³)â^'H Bonds. Angewandte Chemie - International Edition, 2018, 57, 16837-16841.	13.8	108
10	Stereoselective radical C–H alkylation with acceptor/acceptor-substituted diazo reagents via Co(<scp>ii</scp>)-based metalloradical catalysis. Chemical Science, 2015, 6, 1219-1224.	7.4	100
11	Cobalt(II) atalyzed Asymmetric Olefin Cyclopropanation with αâ€Ketodiazoacetates. Angewandte Chemie - International Edition, 2013, 52, 11857-11861.	13.8	95
12	Ruthenium-Catalyzed Enantioselective C–H Functionalization: A Practical Access to Optically Active Indoline Derivatives. Journal of the American Chemical Society, 2019, 141, 15730-15736.	13.7	89
13	Enantioselective Radical Construction of 5-Membered Cyclic Sulfonamides by Metalloradical C–H Amination. Journal of the American Chemical Society, 2019, 141, 18160-18169.	13.7	84
14	Selective radical amination of aldehydic C(sp ²)–H bonds with fluoroaryl azides via Co(<scp>ii</scp>)-based metalloradical catalysis: synthesis of N-fluoroaryl amides from aldehydes under neutral and nonoxidative conditions. Chemical Science, 2014, 5, 2422-2427.	7.4	62
15	Metalloradical activation of α-formyldiazoacetates for the catalytic asymmetric radical cyclopropanation of alkenes. Chemical Science, 2017, 8, 4347-4351.	7.4	61
16	Nextâ€Generation <i>D</i> ₂ â€Symmetric Chiral Porphyrins for Cobalt(II)â€Based Metalloradical Catalysis: Catalyst Engineering by Distal Bridging. Angewandte Chemie - International Edition, 2019, 58, 2670-2674.	13.8	59
17	Stereoselective intramolecular cyclopropanation of α-diazoacetates via Co(<scp>ii</scp>)-based metalloradical catalysis. Organic Chemistry Frontiers, 2014, 1, 515-520.	4.5	31
18	Catalytic Radical Process for Enantioselective Amination of C(sp ³)â^'H Bonds. Angewandte Chemie, 2018, 130, 17079-17083.	2.0	29

Xin Cui

#	Article	IF	CITATIONS
19	Metalloradical activation of carbonyl azides for enantioselective radical aziridination. CheM, 2021, 7, 1120-1134.	11.7	29
20	Ligand Effect on Cobalt(II)â€Catalyzed Asymmetric Cyclopropanation with Diazosulfones – Approaching High Stereoselectivity through Modular Design of D 2 â€Symmetric Chiral Porphyrins. European Journal of Inorganic Chemistry, 2012, 2012, 430-434.	2.0	24
21	Catalytic [2 + 2 + 2] cycloaddition with indium(<scp>iii</scp>)-activated formaldimines: a practical and selective access to hexahydropyrimidines and 1,3-diamines from alkenes. Chemical Science, 2017, 8, 6520-6524.	7.4	24
22	Room temperature activation of aryloxysulfonyl azides by [Co(II)(TPP)] for selective radical aziridination of alkenes via metalloradical catalysis. Tetrahedron Letters, 2015, 56, 3431-3434.	1.4	21
23	Enabling Catalytic Arene C–H Amidomethylation via Bis(tosylamido)methane as a Sustainable Formaldimine Releaser. Organic Letters, 2019, 21, 3735-3740.	4.6	14
24	Aryldiazonium ion initiated C–N bond cleavage for the versatile, efficient and regioselective ring opening of aziridines. Organic Chemistry Frontiers, 2019, 6, 1832-1836.	4.5	14
25	Synthesis of <i>C</i> -Unsubstituted 1,2-Diazetidines and Their Ring-Opening Reactions via Selective N–N Bond Cleavage. Journal of Organic Chemistry, 2018, 83, 9497-9503.	3.2	12
26	Nextâ€Generation D 2 â€Symmetric Chiral Porphyrins for Cobalt(II)â€Based Metalloradical Catalysis: Catalyst Engineering by Distal Bridging. Angewandte Chemie, 2019, 131, 2696-2700.	2.0	12
27	Fe(III)-Based Tandem Catalysis for Amidomethylative Multiple Substitution Reactions of α-Substituted Styrene Derivatives. ACS Catalysis, 2020, 10, 10627-10636.	11.2	8
28	Ligand ontrolled Regiodivergence for Catalytic Stereoselective Semireduction of Allenamides. Chemistry - A European Journal, 2022, 28, .	3.3	4
29	Catalytic Amidomethylative [2+2+2] Cycloaddition of Formaldimine and Styrenes toward N-Heterocycles. Synthesis, 2022, 54, 2165-2174.	2.3	1
30	Kinetic spectroscopic quantification using two-step chromogenic and fluorogenic reactions: From theoretical modeling to experimental quantification of biomarkers in practical samples. Analytica Chimica Acta, 2021, 1153, 338293.	5.4	0