Matilde Todaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1766597/publications.pdf

Version: 2024-02-01

36303 22832 17,564 119 51 112 citations h-index g-index papers 124 124 124 21857 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	PI3K-driven HER2 expression is a potential therapeutic target in colorectal cancer stem cells. Gut, 2022, 71, 119-128.	12.1	46
2	Dual Inhibition of Myc Transcription and PI3K Activity Effectively Targets Colorectal Cancer Stem Cells. Cancers, 2022, 14, 673.	3.7	4
3	Effective targeting of breast cancer stem cells by combined inhibition of Sam68 and Rad51. Oncogene, 2022, 41, 2196-2209.	5.9	8
4	Targeting of the Peritumoral Adipose Tissue Microenvironment as an Innovative Antitumor Therapeutic Strategy. Biomolecules, 2022, 12, 702.	4.0	3
5	Magnetic Nanoparticle-Based Hyperthermia Mediates Drug Delivery and Impairs the Tumorigenic Capacity of Quiescent Colorectal Cancer Stem Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 15959-15972.	8.0	35
6	The C-X-C Motif Chemokine Ligand 1 Sustains Breast Cancer Stem Cell Self-Renewal and Promotes Tumor Progression and Immune Escape Programs. Frontiers in Cell and Developmental Biology, 2021, 9, 689286.	3.7	22
7	CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin. IScience, 2021, 24, 102664.	4.1	31
8	Messing Up the Cancer Stem Cell Chemoresistance Mechanisms Supported by Tumor Microenvironment. Frontiers in Oncology, 2021, 11, 702642.	2.8	21
9	Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery. Nature Communications, 2021, 12, 5006.	12.8	38
10	Nobiletin and Xanthohumol Sensitize Colorectal Cancer Stem Cells to Standard Chemotherapy. Cancers, 2021, 13, 3927.	3.7	20
11	Interleukin-30 feeds breast cancer stem cells via CXCL10 and IL23 autocrine loops and shapes immune contexture and host outcome., 2021, 9, e002966.		13
12	Targeting Phosphatases and Kinases: How to Checkmate Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 690306.	3.7	21
13	Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene, 2020, 39, 987-1003.	5.9	24
14	ROS and Lipid Droplet accumulation induced by high glucose exposure in healthy colon and Colorectal Cancer Stem Cells. Genes and Diseases, 2020, 7, 620-635.	3.4	26
15	Cancer Stem Cells in Thyroid Tumors: From the Origin to Metastasis. Frontiers in Endocrinology, 2020, 11, 566.	3.5	22
16	Metabolic Escape Routes of Cancer Stem Cells and Therapeutic Opportunities. Cancers, 2020, 12, 1436.	3.7	15
17	Cancer Stem Cells: From Birth to Death. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 1-30.	0.1	1
18	Meeting the Challenge of Targeting Cancer Stem Cells. Frontiers in Cell and Developmental Biology, 2019, 7, 16.	3.7	109

#	Article	IF	CITATIONS
19	Accumulation of Circulating CCR7+ Natural Killer Cells Marks Melanoma Evolution and Reveals a CCL19-Dependent Metastatic Pathway. Cancer Immunology Research, 2019, 7, 841-852.	3.4	47
20	Capturing colorectal cancer interâ€tumor heterogeneity in patientâ€derived xenograft (PDX) models. International Journal of Cancer, 2019, 144, 366-371.	5.1	32
21	MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nature Communications, 2018, 9, 1024.	12.8	114
22	Microenvironment in neuroblastoma: isolation and characterization of tumor-derived mesenchymal stromal cells. BMC Cancer, 2018, 18, 1176.	2.6	51
23	MiR-205-5p inhibition by locked nucleic acids impairs metastatic potential of breast cancer cells. Cell Death and Disease, 2018, 9, 821.	6.3	32
24	PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Scientific Reports, 2017, 7, 43013.	3.3	44
25	IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Research, 2017, 77, 3268-3279.	0.9	49
26	Innovative Therapeutic Strategies Targeting Colorectal Cancer Stem Cells. Current Colorectal Cancer Reports, 2017, 13, 91-100.	0.5	1
27	Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma. Oncogene, 2017, 36, 4641-4652.	5.9	86
28	Squamous Cell Tumors Recruit $\hat{I}^3\hat{I}$ T Cells Producing either IL17 or IFN \hat{I}^3 Depending on the Tumor Stage. Cancer Immunology Research, 2017, 5, 397-407.	3.4	59
29	Distinctive features of tumor-infiltrating Î ³ δT lymphocytes in human colorectal cancer. Oncolmmunology, 2017, 6, e1347742.	4.6	119
30	Role of Type I and II Interferons in Colorectal Cancer and Melanoma. Frontiers in Immunology, 2017, 8, 878.	4.8	60
31	Dual targeting of HER3 and MEK may overcome HER3-dependent drug-resistance of colon cancers. Oncotarget, 2017, 8, 108463-108479.	1.8	8
32	MiR-24 induces chemotherapy resistance and hypoxic advantage in breast cancer. Oncotarget, 2017, 8, 19507-19521.	1.8	63
33	Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment. Oncotarget, 2016, 7, 65504-65513.	1.8	38
34	MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b. Oncotarget, 2016, 7, 580-592.	1.8	84
35	Apoptosis induced by a HIPK2 full-length-specific siRNA is due to off-target effects rather than prevalence of HIPK2-1"e8 isoform. Oncotarget, 2016, 7, 1675-1686.	1.8	5
36	Activated Thyroid Hormone Promotes Differentiation and Chemotherapeutic Sensitization of Colorectal Cancer Stem Cells by Regulating Wnt and BMP4 Signaling. Cancer Research, 2016, 76, 1237-1244.	0.9	72

#	Article	IF	Citations
37	Normal vs cancer thyroid stem cells: the road to transformation. Oncogene, 2016, 35, 805-815.	5.9	22
38	p63 role in breast cancer. Aging, 2016, 8, 2256-2257.	3.1	10
39	î"Np63 drives metastasis in breast cancer cells <i>via</i> PI3K/CD44v6 axis. Oncotarget, 2016, 7, 54157-54173.	1.8	25
40	Abstract 2484: Non-canonical Hedgehog/Gli1 signaling drives lung adenocarcinoma stem cells survival and its targeting inhibits CSC-derived tumors. , 2016, , .		0
41	Abstract 3311: Autocrine and paracrine IL-4 maintains breast cancer stem cells traits via RAS/MAPK/DUSP pathway. , 2016, , .		0
42	A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE, 2015, 10, e0125697.	2.5	14
43	Cancer Stem Cells Sensitivity Assay (STELLA) in Patients with Advanced Lung and Colorectal Cancer: A Feasibility Study. PLoS ONE, 2015, 10, e0125037.	2.5	9
44	miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance. Cell Death and Disease, 2015, 6, e1823-e1823.	6.3	74
45	Dynamic regulation of the cancer stem cell compartment by Cripto-1 in colorectal cancer. Cell Death and Differentiation, 2015, 22, 1700-1713.	11.2	50
46	Lipid Droplets: A New Player in Colorectal Cancer Stem Cells Unveiled by Spectroscopic Imaging. Stem Cells, 2015, 33, 35-44.	3.2	185
47	TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene, 2015, 34, 681-690.	5.9	287
48	By promoting cell differentiation, miR-100 sensitizes basal-like breast cancer stem cells to hormonal therapy. Oncotarget, 2015, 6, 2315-2330.	1.8	43
49	Targeting Cancer Stem Cells and the Tumor Microenvironment. , 2015, , 445-476.		0
50	Abstract LB-143: DNp63 governs metastatic outgrowth of breast cancer stem cells. , 2015, , .		0
51	Estrogens and Stem Cells in Thyroid Cancer. Frontiers in Endocrinology, 2014, 5, 124.	3.5	18
52	î³Î´T cells as a potential tool in colon cancer immunotherapy. Immunotherapy, 2014, 6, 989-999.	2.0	17
53	Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death and Disease, 2014, 5, e1336-e1336.	6.3	219
54	Colorectal Cancer Stem Cells: From the Crypt to the Clinic. Cell Stem Cell, 2014, 15, 692-705.	11.1	340

#	Article	IF	CITATIONS
55	CD44v6 Is a Marker of Constitutive and Reprogrammed Cancer Stem Cells Driving Colon Cancer Metastasis. Cell Stem Cell, 2014, 14, 342-356.	11.1	617
56	Elimination of quiescent/slow-proliferating cancer stem cells by Bcl-XL inhibition in non-small cell lung cancer. Cell Death and Differentiation, 2014, 21, 1877-1888.	11.2	90
57	Cancer-Initiating Cells from Colorectal Cancer Patients Escape from T Cell–Mediated Immunosurveillance In Vitro through Membrane-Bound IL-4. Journal of Immunology, 2014, 192, 523-532.	0.8	97
58	p63 Isoforms Regulate Metabolism of Cancer Stem Cells. Journal of Proteome Research, 2014, 13, 2120-2136.	3.7	25
59	Abstract 3897: Sam68 sustains self-renewal and invasiveness of breast cancer initiating cells. , 2014, , .		0
60	Tumor and its microenvironment: A synergistic interplay. Seminars in Cancer Biology, 2013, 23, 522-532.	9.6	344
61	Erythropoietin Activates Cell Survival Pathways in Breast Cancer Stem–like Cells to Protect Them from Chemotherapy. Cancer Research, 2013, 73, 6393-6400.	0.9	37
62	Mechanisms underlying lineage commitment and plasticity of human $\hat{I}^3\hat{I}$ T cells. Cellular and Molecular Immunology, 2013, 10, 30-34.	10.5	66
63	Human NK Cells Selective Targeting of Colon Cancer–Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules. Journal of Immunology, 2013, 190, 2381-2390.	0.8	224
64	Combining conventional chemotherapy and $\hat{l}^3\hat{l}$ T cell-based immunotherapy to target cancer-initiating cells. Oncolmmunology, 2013, 2, e25821.	4.6	37
65	Distribution, function and predictive value of tumor-infiltrating $\hat{I}^3\hat{I}$ T lymphocytes. Oncolmmunology, 2013, 2, e23434.	4.6	6
66	Chemotherapy Sensitizes Colon Cancer Initiating Cells to $\hat{V}^39\hat{V}^2$ T Cell-Mediated Cytotoxicity. PLoS ONE, 2013, 8, e65145.	2.5	41
67	CD133 as a target for colon cancer. Expert Opinion on Therapeutic Targets, 2012, 16, 259-267.	3.4	30
68	Proliferation State and Polo-Like Kinase1 Dependence of Tumorigenic Colon Cancer Cells. Stem Cells, 2012, 30, 1819-1830.	3.2	53
69	IL-21 Regulates the Differentiation of a Human $\hat{I}^3\hat{I}^*T$ Cell Subset Equipped with B Cell Helper Activity. PLoS ONE, 2012, 7, e41940.	2.5	54
70	Characterization of Human $\hat{l}^3\hat{l}$ T Lymphocytes Infiltrating Primary Malignant Melanomas. PLoS ONE, 2012, 7, e49878.	2.5	137
71	Human Thyroid Cancer Stem Cells. , 2012, , 137-143.		0
72	Detection of Cancer Stem Cells Using AC133 Antibody. , 2012, , 37-43.		0

#	Article	IF	Citations
73	Bone Morphogenetic Protein 4 Induces Differentiation of Colorectal Cancer Stem Cells and Increases Their Response to Chemotherapy in Mice. Gastroenterology, 2011, 140, 297-309.e6.	1.3	202
74	Differentiation, phenotype, and function of interleukin-17–producing human Vγ9Vδ2 T cells. Blood, 2011, 118, 129-138.	1.4	262
75	Immunotherapy targeting colon cancer stem cells. Immunotherapy, 2011, 3, 97-106.	2.0	19
76	Colon Cancer Stem Cells: Bench-to-Bedsideâ€"New Therapeutical Approaches in Clinical Oncology for Disease Breakdown. Cancers, 2011, 3, 1957-1974.	3.7	9
77	Colorectal Cancer Stem Cells and Cell Death. Cancers, 2011, 3, 1929-1946.	3.7	15
78	Prevention of Chemotherapy-Induced Anemia and Thrombocytopenia by Constant Administration of Stem Cell Factor. Clinical Cancer Research, 2011, 17, 6185-6191.	7.0	24
79	Survivin is regulated by interleukinâ€4 in colon cancer stem cells. Journal of Cellular Physiology, 2010, 225, 555-561.	4.1	77
80	<i>In vivo</i> manipulation of $V\hat{1}^39V\hat{1}^2$ T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clinical and Experimental Immunology, 2010, 161, 290-297.	2.6	266
81	Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature, 2010, 468, 824-828.	27.8	1,235
82	Aurora-A Is Essential for the Tumorigenic Capacity and Chemoresistance of Colorectal Cancer Stem Cells. Cancer Research, 2010, 70, 4655-4665.	0.9	138
83	Tumorigenic and Metastatic Activity of Human Thyroid Cancer Stem Cells. Cancer Research, 2010, 70, 8874-8885.	0.9	197
84	VĴ³9VĴ′2 T Lymphocytes Efficiently Recognize and Kill Zoledronate-Sensitized, Imatinib-Sensitive, and Imatinib-Resistant Chronic Myelogenous Leukemia Cells. Journal of Immunology, 2010, 184, 3260-3268.	0.8	132
85	Colon Cancer Stem Cells: Promise of Targeted Therapy. Gastroenterology, 2010, 138, 2151-2162.	1.3	411
86	Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biology, 2010, 12, 468-476.	10.3	1,623
87	Suppressor of Cytokine Signaling 3 Sensitizes Anaplastic Thyroid Cancer to Standard Chemotherapy. Cancer Research, 2009, 69, 6141-6148.	0.9	32
88	Efficient Killing of Human Colon Cancer Stem Cells by $\hat{I}^3\hat{I}$ T Lymphocytes. Journal of Immunology, 2009, 182, 7287-7296.	0.8	260
89	Therapeutic implications of cancer initiating cells. Expert Opinion on Biological Therapy, 2009, 9, 1005-1016.	3.1	52
90	Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death and Differentiation, 2008, 15, 762-772.	11.2	191

#	Article	IF	Citations
91	Isolation and Culture of Colon Cancer Stem Cells. Methods in Cell Biology, 2008, 86, 311-324.	1.1	83
92	Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13427-13432.	7.1	654
93	Cancer Stem Cell Analysis and Clinical Outcome in Patients with Glioblastoma Multiforme. Clinical Cancer Research, 2008, 14, 8205-8212.	7.0	327
94	Crucial Role of Interleukin-4 in the Survival of Colon Cancer Stem Cells. Cancer Research, 2008, 68, 4022-4025.	0.9	113
95	Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovascular Research, 2008, 80, 416-424.	3.8	147
96	IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle, 2008, 7, 309-313.	2.6	125
97	The Antiapoptotic Protein BAG3 Is Expressed in Thyroid Carcinomas and Modulates Apoptosis Mediated by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1159-1163.	3.6	99
98	MUC1 Oncoprotein Promotes Refractoriness to Chemotherapy in Thyroid Cancer Cells. Cancer Research, 2007, 67, 5522-5530.	0.9	33
99	Colon Cancer Stem Cells Dictate Tumor Growth and Resist Cell Death by Production of Interleukin-4. Cell Stem Cell, 2007, 1, 389-402.	11.1	968
100	Identification and expansion of human colon-cancer-initiating cells. Nature, 2007, 445, 111-115.	27.8	3,690
101	Comparative study of T84 and T84SF human colon carcinoma cells: in vitro and in vivo ultrastructural and functional characterization of cell culture and metastasis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2006, 449, 48-61.	2.8	0
102	Autocrine Production of Interleukin-4 and Interleukin-10 Is Required for Survival and Growth of Thyroid Cancer Cells. Cancer Research, 2006, 66, 1491-1499.	0.9	110
103	NF- \hat{P} B protects BehÃSet's disease T cells against CD95-induced apoptosis up-regulating antiapoptotic proteins. Arthritis and Rheumatism, 2005, 52, 2179-2191.	6.7	59
104	PED Mediates AKT-Dependent Chemoresistance in Human Breast Cancer Cells. Cancer Research, 2005, 65, 6668-6675.	0.9	56
105	Role of Apoptosis in Autoimmunity. Journal of Clinical Immunology, 2004, 24, 1-11.	3.8	25
106	CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells. European Journal of Immunology, 2004, 34, 1930-1940.	2.9	95
107	Islet \hat{l}^2 -Cell Apoptosis Triggeredin Vivoby Interleukin- $1\hat{l}^2$ Is Not Related to the Inducible Nitric Oxide Synthase Pathway: Evidence for Mitochondrial Function Impairment and Lipoperoxidation. Endocrinology, 2003, 144, 4264-4271.	2.8	19
108	Thyroid cancer resistance to chemotherapeutic drugs via autocrine production of interleukin-4 and interleukin-10. Cancer Research, 2003, 63, 6784-90.	0.9	101

#	Article	IF	CITATIONS
109	Fas-FasL in Hashimoto's thyroiditis. Journal of Clinical Immunology, 2001, 21, 19-23.	3.8	28
110	Involvement of Caspase-3 and GD3 Ganglioside in Ceramide-induced Apoptosis in Farber Disease. Journal of Histochemistry and Cytochemistry, 2000, 48, 57-62.	2.5	34
111	Control of target cell survival in thyroid autoimmunity by T helper cytokines via regulation of apoptotic proteins. Nature Immunology, 2000, 1 , 483-488.	14.5	139
112	GD3 ganglioside directly targets mitochondria in a bclâ€2â€controlled fashion. FASEB Journal, 2000, 14, 2047-2054.	0.5	175
113	Potential Involvement of Fas and Its Ligand in the Pathogenesis of Hashimoto's Thyroiditis. Science, 1997, 275, 960-963.	12.6	557
114	Defective Expression of CD95 (FAS/APO-1) Molecule Suggests Apoptosis Impairment of T and B Cells in HLA-B8, DR3-Positive Individuals. Human Immunology, 1997, 55, 39-45.	2.4	21
115	Low bcl-2 expression and increased spontaneous apoptosis in T-lymphocytes from newly-diagnosed IDDM patients. Diabetologia, 1995, 38, 953-958.	6.3	20
116	Defective expression of the apoptosis-inducing CD95 (Fas/APO-1) molecule on T and B cells in IDDM. Diabetologia, 1995, 38, 1449-1454.	6.3	32
117	T-cell activation in HLA-B8,DR3-positive individuals early antigen expression defect in vitro. Human Immunology, 1995, 42, 289-294.	2.4	32
118	Defective T cell receptor/CD3 complex signaling in human type I diabetes. European Journal of Immunology, 1994, 24, 999-1002.	2.9	44
119	Study of T-cell activation in Type I diabetic patients and pre-Type I diabetic subjects by cytometric analysis: Antigen expression defectin vitro. Journal of Clinical Immunology, 1993, 13, 68-78.	3.8	25