
Casey A Maguire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1764077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	12.2	1,020
2	Dynamic Biodistribution of Extracellular Vesicles <i>in Vivo</i> Using a Multimodal Imaging Reporter. ACS Nano, 2014, 8, 483-494.	14.6	663
3	High levels of AAV vector integration into CRISPR-induced DNA breaks. Nature Communications, 2019, 10, 4439.	12.8	257
4	Microvesicle-associated AAV Vector as a Novel Gene Delivery System. Molecular Therapy, 2012, 20, 960-971.	8.2	236
5	Extracellular vesicles and intercellular communication within the nervous system. Journal of Clinical Investigation, 2016, 126, 1198-1207.	8.2	188
6	Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV. Molecular Therapy, 2017, 25, 379-391.	8.2	181
7	Heparin blocks transfer of extracellular vesicles between donor and recipient cells. Journal of Neuro-Oncology, 2013, 115, 343-351.	2.9	156
8	Heparin affinity purification of extracellular vesicles. Scientific Reports, 2015, 5, 10266.	3.3	152
9	Viral vectors for therapy of neurologic diseases. Neuropharmacology, 2017, 120, 63-80.	4.1	130
10	CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease. Molecular Therapy - Nucleic Acids, 2018, 11, 429-440.	5.1	116
11	Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery inÂvivo. Biomaterials, 2014, 35, 7598-7609.	11.4	112
12	Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate. Molecular Therapy - Methods and Clinical Development, 2019, 13, 1-13.	4.1	110
13	Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection. Scientific Reports, 2017, 7, 45329.	3.3	108
14	In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy. Molecular Therapy, 2016, 24, 1247-1257.	8.2	98
15	Trafficking of adenoâ€associated virus vectors across a model of the blood–brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells. Journal of Neurochemistry, 2017, 140, 216-230.	3.9	97
16	Enhanced liver gene transfer and evasion of preexisting humoral immunity with exosome-enveloped AAV vectors. Blood Advances, 2017, 1, 2019-2031.	5.2	90
17	Selection of an Efficient AAV Vector for Robust CNS Transgene Expression. Molecular Therapy - Methods and Clinical Development, 2019, 15, 320-332.	4.1	89
18	Triple Bioluminescence Imaging for In Vivo Monitoring of Cellular Processes. Molecular Therapy - Nucleic Acids, 2013, 2, e99.	5.1	77

CASEY A MAGUIRE

#	Article	IF	CITATIONS
19	<i>Gaussia</i> Luciferase Variant for High-Throughput Functional Screening Applications. Analytical Chemistry, 2009, 81, 7102-7106.	6.5	74
20	Gene Therapy for the Nervous System: Challenges and New Strategies. Neurotherapeutics, 2014, 11, 817-839.	4.4	70
21	Efficient Gene Transfer to the Central Nervous System by Single-Stranded Anc80L65. Molecular Therapy - Methods and Clinical Development, 2018, 10, 197-209.	4.1	62
22	Gene therapy for Alzheimer's disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation. Human Molecular Genetics, 2020, 29, 2920-2935.	2.9	55
23	AAVâ€mediated gene transfer of DNase I in the liver of mice with colorectal cancer reduces liver metastasis and restores local innate and adaptive immune response. Molecular Oncology, 2020, 14, 2920-2935.	4.6	53
24	Adenoassociated Virus Serotype 9-Mediated Gene Therapy for X-Linked Adrenoleukodystrophy. Molecular Therapy, 2015, 23, 824-834.	8.2	51
25	Tailored transgene expression to specific cell types in the central nervous system after peripheral injection with AAV9. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16081.	4.1	46
26	Directed evolution of adeno-associated virus for glioma cell transduction. Journal of Neuro-Oncology, 2010, 96, 337-347.	2.9	43
27	AAV-S: A versatile capsid variant for transduction of mouse and primate inner ear. Molecular Therapy - Methods and Clinical Development, 2021, 21, 382-398.	4.1	40
28	Preventing Growth of Brain Tumors by Creating a Zone of Resistance. Molecular Therapy, 2008, 16, 1695-1702.	8.2	39
29	Preclinical testing of AAV9-PHP.B for transgene expression in the non-human primate cochlea. Hearing Research, 2020, 394, 107930.	2.0	39
30	Valproic acid enhances gene expression from viral gene transfer vectors. Journal of Virological Methods, 2005, 125, 23-33.	2.1	35
31	Mouse Gender Influences Brain Transduction by Intravascularly Administered AAV9. Molecular Therapy, 2013, 21, 1470-1471.	8.2	33
32	Extracellular vesicles: nature's nanoparticles for improving gene transfer with adenoâ€associated virus vectors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1488.	6.1	29
33	Viral vectors for gene delivery to the inner ear. Hearing Research, 2020, 394, 107927.	2.0	26
34	Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery. Journal of Neuro-Oncology, 2018, 139, 293-305.	2.9	24
35	Systemically administered AAV9-sTRAIL combats invasive glioblastoma in a patient-derived orthotopic xenograft model. Molecular Therapy - Oncolytics, 2016, 3, 16017.	4.4	21
36	Intrathecal Adeno-Associated Viral Vector-Mediated Gene Delivery for Adrenomyeloneuropathy. Human Gene Therapy, 2019, 30, 544-555.	2.7	21

CASEY A MAGUIRE

#	Article	IF	CITATIONS
37	In vivo engineering of lymphocytes after systemic exosome-associated AAV delivery. Scientific Reports, 2020, 10, 4544.	3.3	20
38	Intracranial AAVâ€sTRAIL combined with lanatoside C prolongs survival in an orthotopic xenograft mouse model ofÂinvasive glioblastoma. Molecular Oncology, 2016, 10, 625-634.	4.6	18
39	Gene therapy with apoptosis-associated speck-like protein, a newly described schwannoma tumor suppressor, inhibits schwannoma growth in vivo. Neuro-Oncology, 2019, 21, 854-866.	1.2	18
40	Delivering AAV to the Central Nervous and Sensory Systems. Trends in Pharmacological Sciences, 2021, 42, 461-474.	8.7	18
41	Long-Term Therapeutic Efficacy of Intravenous AAV-Mediated Hamartin Replacement in Mouse Model of Tuberous Sclerosis Type 1. Molecular Therapy - Methods and Clinical Development, 2019, 15, 18-26.	4.1	17
42	Gene therapy for tuberous sclerosis complex type 2 in a mouse model by delivery of AAV9 encoding a condensed form of tuberin. Science Advances, 2021, 7, .	10.3	17
43	The AAV9 Variant Capsid AAV-F Mediates Widespread Transgene Expression in Nonhuman Primate Spinal Cord After Intrathecal Administration. Human Gene Therapy, 2022, 33, 61-75.	2.7	16
44	Neutralizing Antibody Evasion and Transduction with Purified Extracellular Vesicle-Enveloped Adeno-Associated Virus Vectors. Human Gene Therapy, 2021, 32, 1457-1470.	2.7	16
45	Extracellular Vesicles as Enhancers of Virus Vector–Mediated Gene Delivery. Human Gene Therapy, 2014, 25, 785-786.	2.7	13
46	Codon-optimized Luciola italica luciferase variants for mammalian gene expression in culture and in vivo. Molecular Imaging, 2012, 11, 13-21.	1.4	6
47	Gene replacement therapy in a schwannoma mouse model of neurofibromatosis type 2. Molecular Therapy - Methods and Clinical Development, 2022, , .	4.1	5
48	Schwannoma Gene Therapy via Adeno-Associated Viral Vector Delivery of Apoptosis-Associated Speck-like Protein Containing CARD (ASC): Preclinical Efficacy and Safety. International Journal of Molecular Sciences, 2022, 23, 819.	4.1	2
49	Bioluminescence-Based Monitoring of Virus Vector-Mediated Gene Transfer in Mice. Methods in Molecular Biology, 2014, 1098, 197-209.	0.9	0