Tabassum Ahsan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1762812/publications.pdf Version: 2024-02-01

TARASSUM AHSAN

#	Article	IF	CITATIONS
1	Strategies for scalable manufacturing and translation of MSC-derived extracellular vesicles. Stem Cell Research, 2020, 48, 101978.	0.7	54
2	Bioreactor Parameters for Microcarrier-Based Human MSC Expansion under Xeno-Free Conditions in a Vertical-Wheel System. Bioengineering, 2020, 7, 73.	3.5	33
3	Modulation of the in vitro angiogenic potential of human mesenchymal stromal cells from different tissue sources. Journal of Cellular Physiology, 2020, 235, 7224-7238.	4.1	16
4	Peak MSC—Are We There Yet?. Frontiers in Medicine, 2018, 5, 178.	2.6	70
5	Actin and myosin II modulate differentiation of pluripotent stem cells. PLoS ONE, 2018, 13, e0195588.	2.5	21
6	Lack of vimentin impairs endothelial differentiation of embryonic stem cells. Scientific Reports, 2016, 6, 30814.	3.3	27
7	Looking Ahead to Engineering Epimorphic Regeneration of a Human Digit or Limb. Tissue Engineering - Part B: Reviews, 2016, 22, 251-262.	4.8	17
8	Cytoskeletal Expression and Remodeling in Pluripotent Stem Cells. PLoS ONE, 2016, 11, e0145084.	2.5	47
9	Applying Shear Stress to Pluripotent Stem Cells. Methods in Molecular Biology, 2015, 1341, 377-389.	0.9	4
10	Fluid Shear Stress Pre-Conditioning Promotes Endothelial Morphogenesis of Embryonic Stem Cells Within Embryoid Bodies. Tissue Engineering - Part A, 2014, 20, 954-965.	3.1	20
11	Differentiation Patterns of Embryonic Stem Cells in Two- versus Three-Dimensional Culture. Cells Tissues Organs, 2013, 197, 399-410.	2.3	61
12	Shear stress during early embryonic stem cell differentiation promotes hematopoietic and endothelial phenotypes. Biotechnology and Bioengineering, 2013, 110, 1231-1242.	3.3	85
13	Effects of shear stress on germ lineage specification of embryonic stem cells. Integrative Biology (United Kingdom), 2012, 4, 1263-1273.	1.3	39
14	Mesenchymal Stem Cells Overexpressing Ephrin-B2 Rapidly Adopt an Early Endothelial Phenotype with Simultaneous Reduction of Osteogenic Potential. Tissue Engineering - Part A, 2010, 16, 2755-2768.	3.1	36
15	Fluid Shear Stress Promotes an Endothelial-Like Phenotype During the Early Differentiation of Embryonic Stem Cells. Tissue Engineering - Part A, 2010, 16, 3547-3553.	3.1	77
16	Human Mesenchymal Stem Cells Form Multicellular Structures in Response to Applied Cyclic Strain. Annals of Biomedical Engineering, 2009, 37, 783-793.	2.5	19
17	Bone Marrow–Derived Mesenchymal Stem Cells Promote Angiogenic Processes in a Time- and Dose-Dependent Manner <i>In Vitro</i> . Tissue Engineering - Part A, 2009, 15, 2459-2470. 	3.1	127
18	Biomechanics of integrative cartilage repair. Osteoarthritis and Cartilage, 1999, 7, 29-40.	1.3	126

#	Article	IF	CITATIONS
19	Integrative cartilage repair: Inhibition by ?-aminopropionitrile. Journal of Orthopaedic Research, 1999, 17, 850-857.	2.3	66