
Pierre-Yves Schobbens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1762039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generic semantics of feature diagrams. Computer Networks, 2007, 51, 456-479.	5.1	329
2	Feature Diagrams: A Survey and a Formal Semantics. , 2006, , .		283
3	Model checking <u>lots</u> of systems. , 2010, , .		242
4	Featured Transition Systems: Foundations for Verifying Variability-Intensive Systems and Their Application to LTL Model Checking. IEEE Transactions on Software Engineering, 2013, 39, 1069-1089.	5.6	198
5	Symbolic model checking of software product lines. , 2011, , .		141
6	Disambiguating the Documentation of Variability in Software Product Lines: A Separation of Concerns, Formalization and Automated Analysis. , 2007, , .		132
7	Alternating-time logic with imperfect recall. Electronic Notes in Theoretical Computer Science, 2004, 85, 82-93.	0.9	99
8	Operators and Laws for Combining Preference Relations. Journal of Logic and Computation, 2002, 12, 13-53.	0.8	92
9	Model checking software product lines with SNIP. International Journal on Software Tools for Technology Transfer, 2012, 14, 589-612.	1.9	90
10	What's in a Feature: A Requirements Engineering Perspective. , 2008, , 16-30.		74
11	The regular real-time languages. Lecture Notes in Computer Science, 1998, , 580-591.	1.3	67
12	ProVeLines. , 2013, , .		55
13	An experiment in formal software development. Communications of the ACM, 1991, 34, 62.	4.5	46
14	Evaluating formal properties of feature diagram languages. IET Software, 2008, 2, 281.	2.1	46
15	State clock logic: A decidable real-time logic. Lecture Notes in Computer Science, 1997, , 33-47.	1.3	43
16	Clear justification of modeling decisions for goal-oriented requirements engineering. Requirements Engineering, 2008, 13, 87-115.	3.1	43
17	Featured model-based mutation analysis. , 2016, , .		42
18	From live sequence charts to state machines and back: a guided tour. IEEE Transactions on Software Engineering, 2005, 31, 999-1014.	5.6	40

PIERRE-YVES SCHOBBENS

#	Article	IF	CITATIONS
19	Formal semantics, modular specification, and symbolic verification of product-line behaviour. Science of Computer Programming, 2014, 80, 416-439.	1.9	40
20	Behavioural modelling and verification of real-time software product lines. , 2012, , .		37
21	Supporting multiple perspectives in feature-based configuration. Software and Systems Modeling, 2013, 12, 641-663.	2.7	37
22	Beyond Boolean product-line model checking: Dealing with feature attributes and multi-features. , 2013, , .		37
23	Model-Checking Access Control Policies. Lecture Notes in Computer Science, 2004, , 219-230.	1.3	35
24	Feature interaction in software product line engineering: A systematic mapping study. Information and Software Technology, 2018, 98, 44-58.	4.4	28
25	Counterfactuals and Updates as Inverse Modalities. Journal of Logic, Language and Information, 1997, 6, 123-146.	0.6	27
26	A More Expressive Softgoal Conceptualization for Quality Requirements Analysis. Lecture Notes in Computer Science, 2006, , 281-295.	1.3	27
27	Statistical prioritization for software product line testing: an experience report. Software and Systems Modeling, 2017, 16, 153-171.	2.7	27
28	A methodology for formal analysis and verification of EAST-ADL models. Reliability Engineering and System Safety, 2013, 120, 127-138.	8.9	26
29	Simulation-based abstractions for software product-line model checking. , 2012, , .		25
30	Modeling and Verification for Probabilistic Properties in Software Product Lines. , 2015, , .		25
31	Search-based Similarity-driven Behavioural SPL Testing. , 2016, , .		25
32	Towards statistical prioritization for software product lines testing. , 2014, , .		24
33	A New Algorithm for Strategy Synthesis in LTL Games. Lecture Notes in Computer Science, 2005, , 477-492.	1.3	23
34	Towards Multi-view Feature-Based Configuration. Lecture Notes in Computer Science, 2010, , 106-112.	1.3	21
35	Axioms for real-time logics. Theoretical Computer Science, 2002, 274, 151-182.	0.9	19
36	Model Checking Adaptive Software with Featured Transition Systems. Lecture Notes in Computer Science, 2013, , 1-29.	1.3	19

PIERRE-YVES SCHOBBENS

#	Article	IF	CITATIONS
37	Counterexample guided abstraction refinement of product-line behavioural models. , 2014, , .		18
38	Abstract test case generation for behavioural testing of software product lines. , 2014, , .		18
39	Schedulability analysis support for automotive systems. , 2014, , .		18
40	Managing evolution in software product lines. , 2012, , .		17
41	Coverage Criteria for Behavioural Testing of Software Product Lines. Lecture Notes in Computer Science, 2014, , 336-350.	1.3	17
42	Synthesis of open reactive systems from scenario-based specifications. , 0, , .		14
43	Towards an incremental automata-based approach for software product-line model checking. , 2012, , .		14
44	A Vision for Behavioural Model-Driven Validation of Software Product Lines. Lecture Notes in Computer Science, 2012, , 208-222.	1.3	14
45	The computational complexity of scenario-based agent verification and design. Journal of Applied Logic, 2007, 5, 252-276.	1.1	13
46	Covering SPL Behaviour with Sampled Configurations. , 2015, , .		13
47	Exceptions for algebraic specifications: on the meaning of "butâ€. Science of Computer Programming, 1993, 20, 73-111.	1.9	12
48	A variability perspective of mutation analysis. , 2014, , .		12
49	Featured model types. , 2016, , .		12
50	Model-Based Verification of Energy-Aware Real-Time Automotive Systems. , 2013, , .		10
51	Feature-family-based reliability analysis of software product lines. Information and Software Technology, 2018, 94, 59-81.	4.4	10
52	A Decade of Featured Transition Systems. Lecture Notes in Computer Science, 2019, , 285-312.	1.3	10
53	Model-based mutant equivalence detection using automata language equivalence and simulations. Journal of Systems and Software, 2018, 141, 1-15.	4.5	9
54	Formal Models of Agents. Lecture Notes in Computer Science, 1999, , .	1.3	9

#	Article	IF	CITATIONS
55	Belief Revision and Verisimilitude. Notre Dame Journal of Formal Logic, 1995, 36, .	0.4	9
56	Tool support for code generation from a UMLsec property. , 2010, , .		8
57	Towards Formal Energy and Time Aware Behaviors in EAST-ADL: An MDE Approach. , 2012, , .		8
58	A framework for the rigorous design of highly adaptive timed systems. , 2013, , .		8
59	Justifying Goal Models. , 2006, , .		7
60	Approximating ATL* in ATL. Lecture Notes in Computer Science, 2002, , 289-301.	1.3	7
61	Lightweight Formal Methods for Scenario-Based Software Engineering. Lecture Notes in Computer Science, 2005, , 174-192.	1.3	6
62	State machine flattening, a mapping study and tools assessment. , 2015, , .		5
63	The Complexity of Live Sequence Charts. Lecture Notes in Computer Science, 2005, , 364-378.	1.3	5
64	The logic of "initially―and "next― Complete axiomatization and complexity. Information Processing Letters, 1999, 69, 221-225.	0.6	4
65	Synthesising Features by Games. Electronic Notes in Theoretical Computer Science, 2006, 145, 79-93.	0.9	4
66	Extending EAST-ADL towards formal modeling and analysis of energy-aware real-time systems. , 2013, , .		4
67	Poster: VIBeS, Transition System Mutation Made Easy. , 2015, , .		4
68	On Featured Transition Systems. Lecture Notes in Computer Science, 2017, , 453-463.	1.3	4
69	All roads lead to Rome: Commuting strategies for product-line reliability analysis. Science of Computer Programming, 2018, 152, 116-160.	1.9	4
70	Model-Based Mutation Operators for Timed Systems: A Taxonomy and Research Agenda. , 2018, , .		4
71	Proving feature non-interaction with Alternating-Time Temporal Logic. , 2001, , 85-103.		4
72	Distributed Event Clock Automata. Lecture Notes in Computer Science, 2011, , 250-263.	1.3	4

5

#	Article	IF	CITATIONS
73	Multi-timed Bisimulation for Distributed Timed Automata. Lecture Notes in Computer Science, 2017, , 52-67.	1.3	4
74	An experiment in formal software development: using the B theorem prover on a VDM case study. , 0, , .		3
75	Model-checking the Preservation of Temporal Properties upon Feature Integration. Electronic Notes in Theoretical Computer Science, 2005, 128, 311-324.	0.9	3
76	Comparative semantics of Feature Diagrams: FFD vs. vDFD. , 2006, , .		3
77	Model-checking the preservation of temporal properties upon feature integration. International Journal on Software Tools for Technology Transfer, 2007, 9, 53-62.	1.9	3
78	Memory Event Clocks. Lecture Notes in Computer Science, 2010, , 198-212.	1.3	3
79	An extensible platform for product-line behavioural analysis. , 2014, , .		3
80	Reusable self-adaptation through bidirectional programming. , 2016, , .		3
81	Two approaches towards the formalisation of VDM. Lecture Notes in Computer Science, 1990, , 370-398.	1.3	3
82	Second-order proof systems for algebraic specification languages. Lecture Notes in Computer Science, 1994, , 321-336.	1.3	3
83	Achieving, Satisficing, and Excelling. , 2007, , 286-295.		3
84	Automata Language Equivalence vs. Simulations for Model-Based Mutant Equivalence: An Empirical Evaluation. , 2017, , .		2
85	Applying VDM to large developments. , 1990, , .		2
86	Featured Scents: Towards Assessing Architectural Smells for Self-Adaptive Systems at Runtime. , 2022, ,		2
87	A logic for legal hierarchies. , 1993, , .		1
88	A two-level temporal logic for evolving specifications. Information Processing Letters, 2002, 83, 167-172.	0.6	1
89	InFoCPS: Integrating Formal Analysis of Cyber-Physical Systems with Energy Prognostics. , 2020, , .		1
90	ArThUR: A Tool for Markov Logic Network. Lecture Notes in Computer Science, 2014, , 319-328.	1.3	1

PIERRE-YVES SCHOBBENS

#	Article	IF	CITATIONS
91	Extensions of initial models and their second-order proof systems. Lecture Notes in Computer Science, 1994, , 326-344.	1.3	1
92	\$\$extsf {ML}_{u }\$\$: A Distributed Real-Time Modal Logic. Lecture Notes in Computer Science, 2019, , 19-35.	1.3	1
93	Allocating Goals to Agent Roles During MAS Requirements Engineering. , 2006, , 19-34.		1
94	Applying VDM to large developments. Software Engineering Notes: an Informal Newsletter of the Special Interest Committee on Software Engineering / ACM, 1990, 15, 55-58.	0.7	0
95	Model-Generation of a Fictitious Clock Real-Time Logic Using Sharing Trees. Electronic Notes in Theoretical Computer Science, 2001, 23, 108-126.	0.9	Ο
96	Formal Analysis of Object-Oriented Mograms. , 2017, , .		0
97	An Algebraic Approach for Codesign. Lecture Notes in Computer Science, 2005, , 415-430.	1.3	Ο
98	Synthèse de diagrammes d'états par classe à partir de diagrammes de séquence. Techniques Et Sciences Informatiques, 2007, 26, 797-817.	0.0	0
99	Model Co-evolution and Consistency Management (MCCM'08). Lecture Notes in Computer Science, 2009, , 120-123.	1.3	0