
David A Bechtold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1761769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nature Communications, 2019, 10, 1100.	12.8	369
2	Setting Clock Speed in Mammals: The CK1É› tau Mutation in Mice Accelerates Circadian Pacemakers by Selectively Destabilizing PERIOD Proteins. Neuron, 2008, 58, 78-88.	8.1	342
3	Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nature Genetics, 2017, 49, 274-281.	21.4	280
4	Biological and clinical insights from genetics of insomnia symptoms. Nature Genetics, 2019, 51, 387-393.	21.4	250
5	Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nature Communications, 2016, 7, 10889.	12.8	237
6	The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis. Genes and Development, 2014, 28, 548-560.	5.9	229
7	Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time. Cell, 2019, 177, 896-909.e20.	28.9	227
8	Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15240-15245.	7.1	219
9	Circadian dysfunction in disease. Trends in Pharmacological Sciences, 2010, 31, 191-198.	8.7	191
10	Axonal protection using flecainide in experimental autoimmune encephalomyelitis. Annals of Neurology, 2004, 55, 607-616.	5.3	188
11	Colour As a Signal for Entraining the Mammalian Circadian Clock. PLoS Biology, 2015, 13, e1002127.	5.6	167
12	Axonal protection achieved in a model of multiple sclerosis using lamotrigine. Journal of Neurology, 2006, 253, 1542-1551.	3.6	119
13	Hypothalamic clocks and rhythms in feeding behaviour. Trends in Neurosciences, 2013, 36, 74-82.	8.6	118
14	Misalignment with the external light environment drives metabolic and cardiac dysfunction. Nature Communications, 2017, 8, 417.	12.8	117
15	Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nature Communications, 2019, 10, 3503.	12.8	117
16	Acute Suppressive and Long-Term Phase Modulation Actions of Orexin on the Mammalian Circadian Clock. Journal of Neuroscience, 2014, 34, 3607-3621.	3.6	116
17	The role of RFamide peptides in feeding. Journal of Endocrinology, 2007, 192, 3-15.	2.6	113
18	The Thermogenic Effect of Leptin Is Dependent on a Distinct Population of Prolactin-Releasing Peptide Neurons in the Dorsomedial Hypothalamus. Cell Metabolism, 2014, 20, 639-649.	16.2	104

DAVID A BECHTOLD

#	Article	IF	CITATIONS
19	The cost of circadian desynchrony: Evidence, insights and open questions. BioEssays, 2015, 37, 777-788.	2.5	104
20	Sleep and cognitive performance: cross-sectional associations inÂtheÂUK Biobank. Sleep Medicine, 2017, 38, 85-91.	1.6	102
21	PACAP Neurons in the Hypothalamic Ventromedial Nucleus Are Targets of Central Leptin Signaling. Journal of Neuroscience, 2009, 29, 14828-14835.	3.6	93
22	Chronoâ€nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. Journal of Neurochemistry, 2021, 157, 53-72.	3.9	88
23	A Role for the Melatonin-Related Receptor GPR50 in Leptin Signaling, Adaptive Thermogenesis, and Torpor. Current Biology, 2012, 22, 70-77.	3.9	83
24	Localization of the Heat-Shock Protein Hsp70 to the Synapse Following Hyperthermic Stress in the Brain. Journal of Neurochemistry, 2001, 74, 641-646.	3.9	81
25	Altered metabolism in the melatonin-related receptor (GPR50) knockout mouse. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E176-E182.	3.5	75
26	Sodium-mediated axonal degeneration in inflammatory demyelinating disease. Journal of the Neurological Sciences, 2005, 233, 27-35.	0.6	71
27	Prolactin-Releasing Peptide Mediates Cholecystokinin-Induced Satiety in Mice. Endocrinology, 2006, 147, 4723-4729.	2.8	71
28	The circadian clock regulates inflammatory arthritis. FASEB Journal, 2016, 30, 3759-3770.	0.5	71
29	REVERBa couples the circadian clock to hepatic glucocorticoid action. Journal of Clinical Investigation, 2018, 128, 4454-4471.	8.2	70
30	Metabolic rhythm abnormalities in mice lacking VIP-VPAC ₂ signaling. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R344-R351.	1.8	68
31	Heat shock proteins Hsp27 and Hsp32 localize to synaptic sites in the rat cerebellum following hyperthermia. Molecular Brain Research, 2000, 75, 309-320.	2.3	67
32	Safinamide and flecainide protect axons and reduce microglial activation in models of multiple sclerosis. Brain, 2013, 136, 1067-1082.	7.6	67
33	Axonal protection in experimental autoimmune neuritis by the sodium channel blocking agent flecainide. Brain, 2004, 128, 18-28.	7.6	65
34	The circadian regulator BMAL1 programmes responses to parasitic worm infection via a dendritic cell clock. Scientific Reports, 2018, 8, 3782.	3.3	62
35	The circadian clock protein REVERBα inhibits pulmonary fibrosis development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1139-1147.	7.1	57
36	Induction of Hsp27 and Hsp32 stress proteins and vimentin in glial cells of the rat hippocampus following hyperthermia. Neurochemical Research, 2003, 28, 1163-1173.	3.3	56

DAVID A BECHTOLD

#	Article	IF	CITATIONS
37	A Novel Mechanism Controlling Resetting Speed of the Circadian Clock to Environmental Stimuli. Current Biology, 2014, 24, 766-773.	3.9	46
38	Output from VIP cells of the mammalian central clock regulates daily physiological rhythms. Nature Communications, 2020, 11, 1453.	12.8	42
39	Energy-responsive timekeeping. Journal of Genetics, 2008, 87, 447-458.	0.7	39
40	Bright daytime light enhances circadian amplitude in a diurnal mammal. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	39
41	The Biology of the Circadian Ck1ε <i>tau</i> Mutation in Mice and Syrian Hamsters: A Tale of Two Species. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 261-271.	1.1	38
42	Nuclear receptor REVERBα is a state-dependent regulator of liver energy metabolism. Proceedings of the United States of America, 2020, 117, 25869-25879.	7.1	34
43	Distinct circadian mechanisms govern cardiac rhythms and susceptibility to arrhythmia. Nature Communications, 2021, 12, 2472.	12.8	33
44	Induction of the Metabolic Regulator Txnip in Fasting-Induced and Natural Torpor. Endocrinology, 2013, 154, 2081-2091.	2.8	31
45	Adiponectin Induces A20 Expression in Adipose Tissue to Confer Metabolic Benefit. Diabetes, 2015, 64, 128-136.	0.6	31
46	Hypothalamic Thyroid Hormones: Mediators of Seasonal Physiology. Endocrinology, 2007, 148, 3605-3607.	2.8	27
47	Targeting of the circadian clock via CK1Î Ίμ to improve glucose homeostasis in obesity. Scientific Reports, 2016, 6, 29983.	3.3	27
48	GPR50 Interacts with TIP60 to Modulate Glucocorticoid Receptor Signalling. PLoS ONE, 2011, 6, e23725.	2.5	26
49	Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology. Nature Communications, 2021, 12, 6035.	12.8	26
50	Eat, sleep, repeat: the role of the circadian system in balancing sleep–wake control with metabolic need. Current Opinion in Physiology, 2020, 15, 183-191.	1.8	25
51	Deficient copper concentrations in dried-defatted hepatic tissue from ob/ob mice: A potential model for study of defective copper regulation in metabolic liver disease. Biochemical and Biophysical Research Communications, 2015, 460, 549-554.	2.1	24
52	Adipocyte NR1D1 dictates adipose tissue expansion during obesity. ELife, 2021, 10, .	6.0	24
53	Suppressed cellular oscillations in afterâ€hours mutant mice are associated with enhanced circadian phaseâ€resetting. Journal of Physiology, 2013, 591, 1063-1080.	2.9	21
54	Sleep homeostasis during daytime food entrainment in mice. Sleep, 2019, 42, .	1.1	19

DAVID A BECHTOLD

#	Article	IF	CITATIONS
55	Appetite-modifying actions of pro-neuromedin U-derived peptides. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E545-E551.	3.5	17
56	Chronic inflammatory arthritis drives systemic changes in circadian energy metabolism. Proceedings of the United States of America, 2022, 119, e2112781119.	7.1	11
57	Cardiac mitochondrial function depends on BUD23 mediated ribosome programming. ELife, 2020, 9, .	6.0	10
58	HNF4A modulates glucocorticoid action in the liver. Cell Reports, 2022, 39, 110697.	6.4	10
59	Suprachiasmatic nucleus-dependent and independent outputs driving rhythmic activity in hypothalamic and thalamic neurons. BMC Biology, 2020, 18, 134.	3.8	5
60	Feeding time. ELife, 2015, 4, .	6.0	3
61	Screen Printed, Skin-compliant Sensors for Mouse Electrocardiography. , 2022, , .		2
62	HaloChIP-seq for Antibody-Independent Mapping of Mouse Transcription Factor Cistromes In Vivo. Bio-protocol, 2022, 12, .	0.4	0