Francesca Cottini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1761724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rescue of Hippo coactivator YAP1 triggers DNA damage–induced apoptosis in hematological cancers. Nature Medicine, 2014, 20, 599-606.	30.7	250
2	Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood, 2012, 120, 3519-3529.	1.4	133
3	General population low-count CLL-like MBL persists over time without clinical progression, although carrying the same cytogenetic abnormalities of CLL. Blood, 2011, 118, 6618-6625.	1.4	131
4	Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia, 2014, 28, 680-689.	7.2	128
5	Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13162-13167.	7.1	112
6	Synthetic Lethal Approaches Exploiting DNA Damage in Aggressive Myeloma. Cancer Discovery, 2015, 5, 972-987.	9.4	97
7	Selective and Potent Akt Inhibition Triggers Anti-Myeloma Activities and Enhances Fatal Endoplasmic Reticulum Stress Induced by Proteasome Inhibition. Cancer Research, 2014, 74, 4458-4469.	0.9	63
8	Rational combination treatment with histone deacetylase inhibitors and immunomodulatory drugs in multiple myeloma. Blood Cancer Journal, 2015, 5, e312-e312.	6.2	58
9	Class IIa HDAC inhibition enhances ER stress-mediated cell death in multiple myeloma. Leukemia, 2015, 29, 1918-1927.	7.2	55
10	Pharmacogenomics and chemical library screens reveal a novel SCFSKP2 inhibitor that overcomes Bortezomib resistance in multiple myeloma. Leukemia, 2017, 31, 645-653.	7.2	47
11	Small-molecule multi-targeted kinase inhibitor RGB-286638 triggers P53-dependent and -independent anti-independent anti-multiple myeloma activity through inhibition of transcriptional CDKs. Leukemia, 2013, 27, 2366-2375.	7.2	46
12	Monoclonal B cell lymphocytosis in hepatitis C virus infected individuals. Cytometry Part B - Clinical Cytometry, 2010, 78B, S61-8.	1.5	43
13	p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma. Blood, 2017, 129, 1308-1319.	1.4	36
14	Anti-tumor activities of selective HSP90α/β inhibitor, TAS-116, in combination with bortezomib in multiple myeloma. Leukemia, 2015, 29, 510-514.	7.2	31
15	Delineating the mTOR Kinase Pathway Using a Dual TORC1/2 Inhibitor, AZD8055, in Multiple Myeloma. Molecular Cancer Therapeutics, 2014, 13, 2489-2500.	4.1	23
16	Serine/Threonine Kinase STK4 Is a Novel Target in Myeloma. Blood, 2014, 124, 645-645.	1.4	23
17	Combination of a Selective HSP90α/β Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells. PLoS ONE, 2015, 10, e0143847.	2.5	20
18	Novel therapeutic targets in multiple myeloma. Clinical Advances in Hematology and Oncology, 2015, 13, 236-48.	0.3	16

FRANCESCA COTTINI

#	Article	IF	CITATIONS
19	Awakening the Hippo co-activator YAP1, a mercurial cancer gene, in hematologic cancers. Molecular and Cellular Oncology, 2014, 1, e970055.	0.7	9
20	Real World Experience of Daratumumab: Evaluating Lymphopenia and Adverse Events in Multiple Myeloma Patients. Frontiers in Oncology, 2020, 10, 575168.	2.8	8
21	Redefining CD56 as a Biomarker and Therapeutic Target in Multiple Myeloma. Molecular Cancer Research, 2022, 20, 1083-1095.	3.4	8
22	Improvement in Post-Autologous Stem Cell Transplant Survival of Multiple Myeloma Patients: A Long-Term Institutional Experience. Cancers, 2022, 14, 2277.	3.7	8
23	Imaging intercellular interaction and extracellular vesicle exchange in a co-culture model of chronic lymphocytic leukemia and stromal cells by lattice light-sheet fluorescence microscopy. Methods in Enzymology, 2020, 645, 79-107.	1.0	6
24	TAS-117, a Novel Selective Akt Inhibitor Demonstrates Significant Growth Inhibition in Multiple Myeloma Cells in Vitro and in Vivo. Blood, 2012, 120, 942-942.	1.4	5
25	Predictors of Biomarkers Guiding Targeted Therapeutic Strategies in Locally Advanced Lung Cancer. Cancer Journal (Sudbury, Mass), 2013, 19, 263-271.	2.0	4
26	G-CSF improves safety when you start the day after autologous transplant in multiple myeloma. Leukemia and Lymphoma, 2017, 58, 2947-2951.	1.3	4
27	Multiple Myeloma: Clinical Updates from the American Society of Clinical Oncology Annual Scientific Symposium 2020. Journal of Clinical Medicine, 2020, 9, 3626.	2.4	4
28	Aryl Hydrocarbon Receptor (AHR) Antagonism As a Transformative, Dual-Mechanism Novel Therapy for Multiple Myeloma. Blood, 2018, 132, 1933-1933.	1.4	4
29	G-CSF Starting Day +1 after Autologous Transplant Is Safer Than Day +5 or Day +7 in Patients with Multiple Myeloma. Blood, 2016, 128, 5790-5790.	1.4	4
30	A novel <i>APOA1</i> mutation in a patient with renal amyloidosis: unveiling amyloid by next-generation sequencing. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2019, 26, 253-254.	3.0	3
31	Aberrant Non-Homologous End Joining in Multiple Myeloma: A Role in Genomic Instability and As Potential Prognostic Marker Blood, 2012, 120, 2932-2932.	1.4	3
32	CD56 Has a Critical Role in Regulating Multiple Myeloma Cell Growth and Response to Therapies. Blood, 2021, 138, 889-889.	1.4	3
33	Genomics in Multiple Myeloma. , 2014, , 301-319.		2
34	Blockade of Nuclear Export Protein CRM1 (chromosomal region maintenance 1, XPO1) by a Novel, Potent and Selective CRM1 Inhibitor KPT-185 Induces Significant Antitumor Activity Against Human Multiple Myeloma. Blood, 2011, 118, 2913-2913.	1.4	2
35	Comparison of Patient Outcomes with Two Different Formulations of Melphalan As Conditioning Chemotherapy for Autologous Stem Cell Transplantation in Multiple Myeloma. Blood, 2020, 136, 1-1.	1.4	2
36	Functional expression of aryl hydrocarbon receptor as a potential novel therapeutic target in human multiple myeloma. Leukemia and Lymphoma, 2021, 62, 2968-2980.	1.3	1

FRANCESCA COTTINI

#	Article	IF	CITATIONS
37	CLL-Like MBL In the General Population Persist Over Time, without Clinical Progression, Though Carrying the Same Cytogenetic Abnormalities of CLL. Blood, 2010, 116, 2440-2440.	1.4	1
38	Early Versus Late Discontinuation of Maintenance Therapy in Multiple Myeloma. Blood, 2021, 138, 3796-3796.	1.4	1
39	Targeting NAD+ Salvage Pathway Induces Autophagy in Multiple Myeloma Cells. Blood, 2011, 118, 2920-2920.	1.4	Ο
40	Rational Combination Treatment of a Novel Selective mTOR Kinase Inhibitor AZD8055 with IGF-1R Inhibitors in Multiple Myeloma. Blood, 2012, 120, 4023-4023.	1.4	0
41	The Role of the ABL1/YAP1/P73 Axis in Prevention of DNA Damage-Mediated Apoptosis in Multiple Myeloma. Blood, 2012, 120, 725-725.	1.4	0
42	The Oncogene MYC Triggers Replicative Stress and DNA Damage In Multiple Myeloma. Blood, 2013, 122, 3114-3114.	1.4	0
43	Antitumor Activities Of An Oral Selective HSP90α/β Inhibitor, TAS-116, In Combination With Bortezomib In Multiple Myeloma. Blood, 2013, 122, 4429-4429.	1.4	0
44	Synthetic Lethal Approaches to Exploit Replicative Stress in Aggressive Myeloma. Blood, 2014, 124, 173-173.	1.4	0
45	Abstract B09: Exploiting oncogene-induced DNA replicative stress as synthetic lethal approach to target myeloma , 2015, , .		0
46	Abstract PR04: Exploiting oncogene-induced DNA replicative stress as synthetic lethal approach to target myeloma , 2015, , .		0
47	Targeting Replicative Stress to Treat Hematological Disorders. Blood, 2015, 126, 2419-2419.	1.4	0
48	Abstract PR13: p53-related protein kinase is a novel prognostic marker and therapeutic target in multiple myeloma. , 2017, , .		0
49	Meta-Analysis Illustrates Role of Interferon-Î ³ Signaling in Multiple Myeloma Pathogenesis. Blood, 2018, 132, 4510-4510.	1.4	0
50	Characterization of Monoclonal Gammopathy of Undetermined Significance Progression to Multiple Myeloma through Meta-Analysis of GEO Data. Blood, 2019, 134, 4395-4395.	1.4	0
51	Daratumumab-Mediated Lymphocyte Kinetics Predict Adverse Events and Survival Outcomes in Patients with Multiple Myeloma. Blood, 2019, 134, 5501-5501.	1.4	0
52	Interval Progression Serves As a Predictor of Adverse Outcomes in Patients with Multiple Myeloma. Blood, 2021, 138, 3940-3940.	1.4	0
53	Survival Analysis of Patients with T-Cell Lymphoma or T-Cell Large Granular Leukemia and Concomitant Plasma Cell Dyscrasias. Blood, 2021, 138, 2449-2449.	1.4	0
54	Targeting the Mitotic Checkpoint in Myeloma with OSU-13, a Novel Mps1/Ttk Inhibitor. Blood, 2021, 138, 2660-2660.	1.4	0

#	Article	IF	CITATIONS
55	Incidence, Treatment, and Survival of Patients With T-Cell Lymphoma, T-Cell Large Granular Leukemia, and Concomitant Plasma Cell Dyscrasias. Frontiers in Oncology, 2022, 12, 858426.	2.8	0