Kostya K Ostrikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1759889/publications.pdf

Version: 2024-02-01

833 papers 33,921 citations

4388 86 h-index 138 g-index

873 all docs

873 docs citations

873 times ranked 26332 citing authors

#	Article	IF	CITATIONS
1	Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Physics Reports, 2016, 630, 1-84.	25.6	900
2	Colloquium:Reactive plasmas as a versatile nanofabrication tool. Reviews of Modern Physics, 2005, 77, 489-511.	45.6	599
3	Plasma Catalysis: Synergistic Effects at the Nanoscale. Chemical Reviews, 2015, 115, 13408-13446.	47.7	537
4	Guided ionization waves: Theory and experiments. Physics Reports, 2014, 540, 123-166.	25.6	525
5	Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids. Advances in Physics, 2013, 62, 113-224.	14.4	486
6	Metallic Biomaterials: Current Challenges and Opportunities. Materials, 2017, 10, 884.	2.9	410
7	Heteroatomâ€Doped and Oxygenâ€Functionalized Nanocarbons for Highâ€Performance Supercapacitors. Advanced Energy Materials, 2020, 10, 2001239.	19.5	362
8	Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nature Communications, 2013, 4, 2220.	12.8	328
9	Plasma-activated water: generation, origin of reactive species and biological applications. Journal Physics D: Applied Physics, 2020, 53, 303001.	2.8	314
10	Dynamic self-organization phenomena in complex ionized gas systems: new paradigms and technological aspects. Physics Reports, 2004, 393, 175-380.	25.6	310
11	Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Scientific Reports, 2017, 7, 14025.	3.3	310
12	Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chemistry, 2018, 20, 5276-5284.	9.0	302
13	Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on <i>Escherichia coli</i> Applied Materials & Interfaces, 2017, 9, 6746-6760.	8.0	282
14	Perpendicularly Oriented MoSe ₂ /Graphene Nanosheets as Advanced Electrocatalysts for Hydrogen Evolution. Small, 2015, 11, 414-419.	10.0	276
15	Emerging energy and environmental applications of vertically-oriented graphenes. Chemical Society Reviews, 2015, 44, 2108-2121.	38.1	269
16	Inductively coupled Ar/CH4/H2 plasmas for low-temperature deposition of ordered carbon nanostructures. Journal of Applied Physics, 2004, 95, 2713-2724.	2.5	246
17	Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Optics Express, 2009, 17, 10195.	3.4	244
18	Plasma-aided nanofabrication: where is the cutting edge?. Journal Physics D: Applied Physics, 2007, 40, 2223-2241.	2.8	236

#	Article	lF	CITATIONS
19	In Situ Formation of Oxygen Vacancies Achieving Nearâ€Complete Charge Separation in Planar BiVO ₄ Photoanodes. Advanced Materials, 2020, 32, e2001385.	21.0	236
20	Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells. Plasmonics, 2009, 4, 107-113.	3.4	212
21	Atmospheric pressure plasmas: Infection control and bacterial responses. International Journal of Antimicrobial Agents, 2014, 43, 508-517.	2.5	208
22	Anti-fouling graphene-based membranes for effective water desalination. Nature Communications, 2018, 9, 683.	12.8	197
23	Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nature Communications, 2021, 12, 6856.	12.8	192
24	Low-frequency, high-density, inductively coupled plasma sources: Operation and applications. Physics of Plasmas, 2001, 8, 2549-2557.	1.9	184
25	Plasmaâ€Induced Death of HepG2 Cancer Cells: Intracellular Effects of Reactive Species. Plasma Processes and Polymers, 2012, 9, 59-66.	3.0	184
26	Polyoxometalates (POMs): from electroactive clusters to energy materials. Energy and Environmental Science, 2021, 14, 1652-1700.	30.8	184
27	Structureâ€Controlled, Vertical Grapheneâ€Based, Binderâ€Free Electrodes from Plasmaâ€Reformed Butter Enhance Supercapacitor Performance. Advanced Energy Materials, 2013, 3, 1316-1323.	19.5	182
28	Plasma nanoscience: setting directions, tackling grand challenges. Journal Physics D: Applied Physics, 2011, 44, 174001.	2.8	172
29	Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification. RSC Advances, 2015, 5, 48739-48759.	3.6	172
30	Atmospheric gas plasma–induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Molecular Biology of the Cell, 2014, 25, 1523-1531.	2.1	166
31	Graphene Oxide Synthesis from Agro Waste. Nanomaterials, 2015, 5, 826-834.	4.1	165
32	Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214.	47.7	163
33	The future for plasma science and technology. Plasma Processes and Polymers, 2019, 16, 1800118.	3.0	160
34	Guided ionization waves: The physics of repeatability. Applied Physics Reviews, 2018, 5, 031102.	11.3	148
35	Effect of atmospheric gas plasmas on cancer cell signaling. International Journal of Cancer, 2014, 134, 1517-1528.	5.1	147
36	Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth. Scientific Reports, 2016, 6, 32603.	3.3	142

#	Article	IF	Citations
37	Inactivation of a 25.5µm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet. Journal Physics D: Applied Physics, 2012, 45, 165205.	2.8	138
38	Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge. Applied Physics Letters, 2008, 92, .	3.3	135
39	RF Plasma Sputtering Deposition of Hydroxyapatite Bioceramics: Synthesis, Performance, and Biocompatibility. Plasma Processes and Polymers, 2005, 2, 373-390.	3.0	132
40	Plasma-assisted self-organized growth of uniform carbon nanocone arrays. Carbon, 2007, 45, 2022-2030.	10.3	132
41	RuO ₂ -coated vertical graphene hybrid electrodes for high-performance solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 17293-17301.	10.3	132
42	Air Plasma Activation of Catalytic Sites in a Metalâ€Cyanide Framework for Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1800085.	19.5	132
43	Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Scientific Reports, 2017, 7, 1591.	3.3	130
44	Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications. Scientific Reports, 2019, 9, 718.	3.3	130
45	Microplasmas for Advanced Materials and Devices. Advanced Materials, 2020, 32, e1905508.	21.0	130
46	Holey Ni-Cu phosphide nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2019, 243, 537-545.	20.2	128
47	Applications and Nanotoxicity of Carbon Nanotubes and Graphene in Biomedicine. Journal of Nanomaterials, 2012, 2012, 1-19.	2.7	125
48	Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy. Nature Communications, 2019, 10, 598.	12.8	124
49	Insight into lead-free organic-inorganic hybrid perovskites for photovoltaics and optoelectronics: A first-principles study. Organic Electronics, 2018, 59, 99-106.	2.6	123
50	Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor. Nature Communications, 2017, 8, 14217.	12.8	122
51	Capacitive deionization with nitrogen-doped highly ordered mesoporous carbon electrodes. Chemical Engineering Journal, 2020, 380, 122514.	12.7	122
52	Electrowetting Control of Cassie-to-Wenzel Transitions in Superhydrophobic Carbon Nanotube-Based Nanocomposites. ACS Nano, 2009, 3, 3031-3036.	14.6	120
53	Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas. Nanoscale, 2010, 2, 2281.	5.6	120
54	Elastic and thermodynamic properties of new (Zr3â^'Ti)AlC2 MAX-phase solid solutions. Computational Materials Science, 2017, 137, 318-326.	3.0	119

#	Article	IF	Citations
55	Fast, energy-efficient synthesis of luminescent carbon quantum dots. Green Chemistry, 2014, 16, 2566-2570.	9.0	116
56	Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation. Nano Energy, 2018, 47, 275-284.	16.0	116
57	From nucleation to nanowires: a single-step process in reactive plasmas. Nanoscale, 2010, 2, 2012.	5.6	114
58	Control of morphology and electrical properties of self-organized graphenes in a plasma. Carbon, 2011, 49, 4331-4339.	10.3	113
59	MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Materials, 2016, 8, e268-e268.	7.9	113
60	Multifunctional Solar Waterways: Plasmaâ€Enabled Selfâ€Cleaning Nanoarchitectures for Energyâ€Efficient Desalination. Advanced Energy Materials, 2019, 9, 1901286.	19.5	109
61	Surface charge effects in protein adsorption on nanodiamonds. Nanoscale, 2015, 7, 5726-5736.	5.6	107
62	In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting. Applied Catalysis B: Environmental, 2019, 254, 414-423.	20.2	107
63	White paper on the future of plasma science in environment, for gas conversion and agriculture. Plasma Processes and Polymers, 2019, 16, 1700238.	3.0	104
64	Pulsed dc- and sine-wave-excited cold atmospheric plasma plumes: A comparative analysis. Physics of Plasmas, 2010, 17 , .	1.9	103
65	Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2–ASK1 apoptosis pathways and oxidative stress is mitigated by Srx–Nrf2 anti-oxidant system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2827-2837.	4.1	103
66	Nanostructures of various dimensionalities from plasma and neutral fluxes. Journal Physics D: Applied Physics, 2007, 40, 2308-2319.	2.8	101
67	Monoclinic \hat{l}^2 -MoO ₃ nanosheets produced by atmospheric microplasma: application to lithium-ion batteries. Nanotechnology, 2008, 19, 495302.	2.6	101
68	Plasmas meet nanoparticlesâ€"where synergies can advance the frontier of medicine. Journal Physics D: Applied Physics, 2011, 44, 174018.	2.8	101
69	Physical properties of predicted Ti2CdN versus existing Ti2CdC MAX phase: An ab initio study. Computational Materials Science, 2016, 113, 148-153.	3.0	101
70	Transcutaneous plasma stress: From soft-matter models to living tissues. Materials Science and Engineering Reports, 2019, 138, 36-59.	31.8	101
71	Trimetallic Mo–Ni–Co selenides nanorod electrocatalysts for highly-efficient and ultra-stable hydrogen evolution. Nano Energy, 2020, 71, 104637.	16.0	100
72	Nanowire sensor response to reactive gas environment. Applied Physics Letters, 2008, 92, .	3.3	99

#	Article	IF	Citations
73	Intercalation of Glucose in NiMn-Layered Double Hydroxide Nanosheets: an Effective Path Way towards Battery-type Electrodes with Enhanced Performance. Electrochimica Acta, 2016, 216, 35-43.	5.2	98
74	Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation. Nanoscale, 2010, 2, 594.	5.6	97
75	Scalable graphene production: perspectives and challenges of plasma applications. Nanoscale, 2016, 8, 10511-10527.	5.6	97
76	An ultrathin cobalt-based zeolitic imidazolate framework nanosheet array with a strong synergistic effect towards the efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 18877-18883.	10.3	97
77	Length control of He atmospheric plasma jet plumes: Effects of discharge parameters and ambient air. Physics of Plasmas, 2009, 16, .	1.9	95
78	First hafnium-based MAX phase in the 312 family, Hf3AlC2: A first-principles study. Journal of Alloys and Compounds, 2017, 727, 616-626.	5.5	95
79	Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution. PLoS ONE, 2016, 11, e0155584.	2.5	94
80	The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes. Carbon, 2010, 48, 4570-4574.	10.3	93
81	Pre-lithiation of onion-like carbon/MoS ₂ nano-urchin anodes for high-performance rechargeable lithium ion batteries. Nanoscale, 2014, 6, 8884-8890.	5.6	93
82	Atomic-layer soft plasma etching of MoS2. Scientific Reports, 2016, 6, 19945.	3.3	93
83	Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3V voltage window. Energy Storage Materials, 2019, 19, 56-61.	18.0	93
84	Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. Carbon, 2013, 64, 230-236.	10.3	91
85	Ion-acoustic waves in a complex plasma with negative ions. Physical Review E, 2003, 67, 036406.	2.1	89
86	lon-assisted precursor dissociation and surface diffusion: Enabling rapid, low-temperature growth of carbon nanofibers. Applied Physics Letters, 2007, 90, 251501.	3.3	89
87	The Emerging Role of Gas Plasma in Oncotherapy. Trends in Biotechnology, 2018, 36, 1183-1198.	9.3	89
88	Plasma-assisted self-sharpening of platelet-structured single-crystalline carbon nanocones. Applied Physics Letters, 2007, 91, 113115.	3.3	88
89	High-Mass-Loading Porous Ti ₃ C ₂ T _{<i>x</i>} Films for Ultrahigh-Rate Pseudocapacitors. ACS Energy Letters, 2020, 5, 2266-2274.	17.4	88
90	Interactions of plasma-activated water with biofilms: inactivation, dispersal effects and mechanisms of action. Npj Biofilms and Microbiomes, 2021, 7, 11.	6.4	88

#	Article	IF	CITATIONS
91	Oxygen Vacancy-Mediated ZnO Nanoparticle Photocatalyst for Degradation of Methylene Blue. Applied Sciences (Switzerland), 2018, 8, 353.	2.5	87
92	Fe _{$1\hat{a}^2xS/C$ nanocomposites from sugarcane waste-derived microporous carbon for high-performance lithium ion batteries. Green Chemistry, 2016, 18, 3029-3039.}	9.0	83
93	A highly efficient Ni–Mo bimetallic hydrogen evolution catalyst derived from a molybdate incorporated Ni-MOF. Journal of Materials Chemistry A, 2018, 6, 9228-9235.	10.3	83
94	Deterministic nanoassembly: Neutral or plasma route?. Applied Physics Letters, 2006, 89, 033109.	3.3	82
95	Microplasma Processed Ultrathin Boron Nitride Nanosheets for Polymer Nanocomposites with Enhanced Thermal Transport Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13567-13572.	8.0	82
96	Uniformity of postprocessing of dense nanotube arrays by neutral and ion fluxes. Applied Physics Letters, 2006, 89, 223108.	3.3	81
97	Removal of organophosphorus pesticide residues from Lycium barbarum by gas phase surface discharge plasma. Chemical Engineering Journal, 2018, 342, 401-409.	12.7	81
98	Plasma Breakâ€Down and Reâ€Build: Same Functional Vertical Graphenes from Diverse Natural Precursors. Advanced Materials, 2013, 25, 5638-5642.	21.0	80
99	Deterministic plasma-aided synthesis of high-quality nanoislanded nc-SiC films. Applied Physics Letters, 2007, 90, 173112.	3.3	79
100	Mesoporous cobalt–iron–organic frameworks: a plasma-enhanced oxygen evolution electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 3090-3100.	10.3	79
101	Graphene Array-Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency. Nano-Micro Letters, 2019, 11, 51.	27.0	79
102	Plasmacatalytic bubbles using CeO2 for organic pollutant degradation. Chemical Engineering Journal, 2021, 403, 126413.	12.7	79
103	The production of self-organized carbon connections between Ag nanoparticles using atmospheric microplasma synthesis. Carbon, 2009, 47, 344-347.	10.3	78
104	Beyond Seashells: Bioinspired 2D Photonic and Photoelectronic Devices. Advanced Functional Materials, 2019, 29, 1901460.	14.9	78
105	Rapid, low-temperature synthesis of nc-Si in high-density, non-equilibrium plasmas: enabling nanocrystallinity at very low hydrogen dilution. Journal of Materials Chemistry, 2009, 19, 5134.	6.7	77
106	Single-step, rapid low-temperature synthesis of Si quantum dots embedded in an amorphous SiC matrix in high-density reactive plasmas. Acta Materialia, 2010, 58, 560-569.	7.9	77
107	Synergistic Fusion of Vertical Graphene Nanosheets and Carbon Nanotubes for Highâ€Performance Supercapacitor Electrodes. ChemSusChem, 2014, 7, 2317-2324.	6.8	77
108	Microplasma Bubbles: Reactive Vehicles for Biofilm Dispersal. ACS Applied Materials & Dispersals	8.0	76

#	Article	IF	Citations
109	Emerging technologies for biodiesel production: Processes, challenges, and opportunities. Biomass and Bioenergy, 2022, 163, 106521.	5.7	76
110	Two-Dimensional Simulation of Nanoassembly Precursor Species in Ar+H2+C2H2 Reactive Plasmas. Plasma Processes and Polymers, 2007, 4, 27-40.	3.0	75
111	Self-organized vertically aligned single-crystal silicon nanostructures with controlled shape and aspect ratio by reactive plasma etching. Applied Physics Letters, 2009, 95, 111505.	3.3	75
112	Self-assembly of uniform carbon nanotip structures in chemically active inductively coupled plasmas. Diamond and Related Materials, 2004, 13, 1923-1929.	3.9	74
113	Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey. Carbon, 2013, 60, 221-228.	10.3	74
114	Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations. Nano-Micro Letters, 2018, 10, 33.	27.0	73
115	White paper on the future of plasma science and technology in plastics and textiles. Plasma Processes and Polymers, 2019, 16, 1700228.	3.0	73
116	Recent advances in plasma modification of 2D transition metal dichalcogenides. Nanoscale, 2019, 11, 19202-19213.	5.6	73
117	Ni–Co hydroxide nanosheets on plasma-reduced Co-based metal–organic nanocages for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2019, 7, 4950-4959.	10.3	73
118	Plasma-induced on-surface sulfur vacancies in NiCo ₂ S ₄ enhance the energy storage performance of supercapatteries. Journal of Materials Chemistry A, 2020, 8, 9278-9291.	10.3	73
119	Synthesis of functional nanoassemblies in reactive plasmas. Vacuum, 2006, 80, 1126-1131.	3.5	72
120	Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation. Physics of Plasmas, 2013, 20, .	1.9	72
121	Bi-metallic nitroxide nanodot-decorated tri-metallic sulphide nanosheets by on-electrode plasma-hydrothermal sprouting for overall water splitting. Applied Catalysis B: Environmental, 2020, 261, 118254.	20.2	72
122	Green inhibitors for steel corrosion in acidic environment: state of art. Materials Today Sustainability, 2020, 10, 100044.	4.1	72
123	Integrated plasma-aided nanofabrication facility: Operation, parameters, and assembly of quantum structures and functional nanomaterials. Vacuum, 2006, 80, 621-630.	3.5	70
124	Selective neuronal differentiation of neural stem cells induced by nanosecond microplasma agitation. Stem Cell Research, 2014, 12, 387-399.	0.7	70
125	Quantification of plasma produced OH radical density for water sterilization. Plasma Processes and Polymers, 2018, 15, 1700241.	3.0	70
126	Template-Directed Bifunctional Dodecahedral CoP/CN@MoS ₂ Electrocatalyst for High Efficient Water Splitting. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36649-36657.	8.0	70

#	Article	IF	Citations
127	Techniques to enhance magnetic permeability in microwave absorbing materials. Applied Materials Today, 2020, 19, 100596.	4.3	70
128	Low-temperature assembly of ordered carbon nanotip arrays in low-frequency, high-density inductively coupled plasmas. Surface and Coatings Technology, 2005, 191, 49-53.	4.8	69
129	Control of core-shell structure and elemental composition of binary quantum dots. Applied Physics Letters, 2007, 90, 193110.	3.3	69
130	Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas. Nanotechnology, 2009, 20, 215606.	2.6	68
131	Energy efficiency in nanoscale synthesis using nanosecond plasmas. Scientific Reports, 2013, 3, 1221.	3.3	68
132	Nitrogen-Doped Carbon-Encased Bimetallic Selenide for High-Performance Water Electrolysis. Nano-Micro Letters, 2019, 11, 67.	27.0	67
133	MXene-Based Electrodes for Supercapacitor Energy Storage. Energy &	5.1	67
134	Multiphase nanosheet-nanowire cerium oxide and nickel-cobalt phosphide for highly-efficient electrocatalytic overall water splitting. Applied Catalysis B: Environmental, 2022, 316, 121678.	20.2	67
135	Tailoring microplasma nanofabrication: from nanostructures to nanoarchitectures. Journal Physics D: Applied Physics, 2009, 42, 092002.	2.8	66
136	Crystalline Si nanoparticles below crystallization threshold: Effects of collisional heating in non-thermal atmospheric-pressure microplasmas. Applied Physics Letters, 2014, 104, .	3.3	66
137	Nanopowder management and control of plasma parameters in electronegative SiH4 plasmas. Journal of Applied Physics, 2003, 94, 6097-6107.	2.5	65
138	Microscopic ion fluxes in plasma-aided nanofabrication of ordered carbon nanotip structures. Journal of Applied Physics, 2005, 98, 064304.	2.5	65
139	Defect Healing and Enhanced Nucleation of Carbon Nanotubes by Low-Energy Ion Bombardment. Physical Review Letters, 2013, 110, 065501.	7.8	65
140	Cancerâ€Targeting Graphene Quantum Dots: Fluorescence Quantum Yields, Stability, and Cell Selectivity. Advanced Functional Materials, 2019, 29, 1805860.	14.9	65
141	Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 127-157.	3.7	64
142	Low-temperature plasmas in carbon nanostructure synthesis. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, $2013,31,\ldots$	1.2	63
143	Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance. Energy Storage Materials, 2018, 14, 297-305.	18.0	63
144	Capacitative deionization using commercial activated carbon fiber decorated with polyaniline. Journal of Colloid and Interface Science, 2019, 537, 247-255.	9.4	63

#	Article	IF	Citations
145	Plasma-enabled catalyst-free conversion of ethanol to hydrogen gas and carbon dots near room temperature. Chemical Engineering Journal, 2020, 382, 122745.	12.7	63
146	Future antiviral surfaces: Lessons from COVID-19 pandemic. Sustainable Materials and Technologies, 2020, 25, e00203.	3.3	63
147	Cold atmospheric pressure plasmas in dermatology: Sources, reactive agents, and therapeutic effects. Plasma Processes and Polymers, 2020, 17, 1900218.	3.0	63
148	Sustainable ammonia production by non-thermal plasmas: Status, mechanisms, and opportunities. Chemical Engineering Journal, 2021, 421, 129544.	12.7	63
149	Low-pressure diffusion equilibrium of electronegative complex plasmas. Physical Review E, 2003, 67, 056408.	2.1	62
150	Plasmonic Ag nanoparticles via environment-benign atmospheric microplasma electrochemistry. Nanotechnology, 2013, 24, 095604.	2.6	62
151	Carbon nanostructures for hard tissue engineering. RSC Advances, 2013, 3, 11058.	3.6	62
152	Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants. Science of the Total Environment, 2021, 750, 142295.	8.0	62
153	Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting. Nano-Micro Letters, 2021, 13, 24.	27.0	62
154	Reactive oxygen plasma-enabled synthesis of nanostructured CdO: tailoring nanostructures through plasma–surface interactions. Nanotechnology, 2008, 19, 405605.	2.6	61
155	Pseudomonas aeruginosa Biofilm Response and Resistance to Cold Atmospheric Pressure Plasma Is Linked to the Redox-Active Molecule Phenazine. PLoS ONE, 2015, 10, e0130373.	2.5	61
156	Vacancy defect engineering of BiVO ₄ photoanodes for photoelectrochemical water splitting. Nanoscale, 2021, 13, 17989-18009.	5.6	61
157	Effective Control of Nanostructured Phases in Rapid, Room-Temperature Synthesis of Nanocrystalline Si in High-Density Plasmas. Crystal Growth and Design, 2009, 9, 2863-2867.	3.0	60
158	The effect of temperature on the mechanism of photoluminescence from plasma-nucleated, nitrogenated carbon nanotips. Carbon, 2012, 50, 3561-3571.	10.3	60
159	Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals. Journal of Chromatography A, 2014, 1360, 100-109.	3.7	60
160	Scalable Production of Integrated Graphene Nanoarchitectures for Ultrafast Solar-Thermal Conversion and Vapor Generation. Matter, 2019, 1, 1017-1032.	10.0	60
161	Plasma-heteroatom-doped Ni-V-Fe trimetallic phospho-nitride as high-performance bifunctional electrocatalyst. Applied Catalysis B: Environmental, 2020, 268, 118440.	20.2	60
162	Water-sprouted, plasma-enhanced Ni-Co phospho-nitride nanosheets boost electrocatalytic hydrogen and oxygen evolution. Chemical Engineering Journal, 2020, 402, 126257.	12.7	60

#	Article	IF	Citations
163	Silica Nanoparticles Treated by Cold Atmospheric-Pressure Plasmas Improve the Dielectric Performance of Organic–Inorganic Nanocomposites. ACS Applied Materials & Dielectric 2637-2642.	8.0	59
164	Synergistic Effect of Atmospheric-pressure Plasma and TiO2 Photocatalysis on Inactivation of Escherichia coli Cells in Aqueous Media. Scientific Reports, 2016, 6, 39552.	3.3	59
165	Single-Atom Ru-Implanted Metal–Organic Framework/MnO ₂ for the Highly Selective Oxidation of NO _{<i>x</i>} by Plasma Activation. ACS Catalysis, 2020, 10, 10185-10196.	11.2	58
166	Fast Microplasma Synthesis of Blue Luminescent Carbon Quantum Dots at Ambient Conditions. Plasma Processes and Polymers, 2015, 12, 59-65.	3.0	57
167	Pretreatment and fermentation of lignocellulosic biomass: reaction mechanisms and process engineering. Reaction Chemistry and Engineering, 2020, 5, 2017-2047.	3.7	57
168	Oriented Carbon Nanostructures by Plasma Processing: Recent Advances and Future Challenges. Micromachines, 2018, 9, 565.	2.9	56
169	Coupling bimetallic Ni-Fe catalysts and nanosecond pulsed plasma for synergistic low-temperature CO2 methanation. Chemical Engineering Journal, 2021, 420, 127693.	12.7	56
170	Microfluidic plasmas: Novel technique for chemistry and chemical engineering. Chemical Engineering Journal, 2021, 417, 129355.	12.7	56
171	Highly Efficient Silicon Nanoarray Solar Cells by a Singleâ€Step Plasmaâ€Based Process. Advanced Energy Materials, 2011, 1, 373-376.	19.5	54
172	Kinetics of Low-Pressure, Low-Temperature Graphene Growth: Toward Single-Layer, Single-Crystalline Structure. ACS Nano, 2012, 6, 10276-10286.	14.6	54
173	Low-Temperature CO ₂ Methanation: Synergistic Effects in Plasma-Ni Hybrid Catalytic System. ACS Sustainable Chemistry and Engineering, 2020, 8, 1888-1898.	6.7	54
174	Nanohybrid TiN/Vertical graphene for high-performance supercapacitor applications. Energy Storage Materials, 2020, 26, 138-146.	18.0	54
175	A zinc bromine "supercapattery―system combining triple functions of capacitive, pseudocapacitive and battery-type charge storage. Materials Horizons, 2020, 7, 495-503.	12.2	54
176	Deterministic shape control in plasma-aided nanotip assembly. Journal of Applied Physics, 2006, 100, 036104.	2.5	53
177	Low-temperature plasma-assisted growth of optically transparent, highly oriented nanocrystalline AlN. Journal of Applied Physics, 2007, 101, 024312.	2.5	53
178	Effects of ions and atomic hydrogen in plasma-assisted growth of single-walled carbon nanotubes. Journal of Applied Physics, 2007, 102, 074308.	2.5	53
179	Scalable Production of Few-Layer Niobium Disulfide Nanosheets via Electrochemical Exfoliation for Energy-Efficient Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 13205-13213.	8.0	53
180	Long-lived species in plasma-activated water generated by an AC multi-needle-to-water discharge: effects of gas flow on chemical reactions. Journal Physics D: Applied Physics, 2021, 54, 065201.	2.8	53

#	Article	IF	Citations
181	Supercapacitors based on camphor-derived meso/macroporous carbon sponge electrodes with ultrafast frequency response for ac line-filtering. Journal of Materials Chemistry A, 2015, 3, 14105-14108.	10.3	52
182	Ruthenium nanocrystal decorated vertical graphene nanosheets@Ni foam as highly efficient cathode catalysts for lithium-oxygen batteries. NPG Asia Materials, 2016, 8, e286-e286.	7.9	52
183	Process-specific mechanisms of vertically oriented graphene growth in plasmas. Beilstein Journal of Nanotechnology, 2017, 8, 1658-1670.	2.8	52
184	Multiphase Ni-Fe-selenide nanosheets for highly-efficient and ultra-stable water electrolysis. Applied Catalysis B: Environmental, 2020, 277, 119220.	20.2	52
185	Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge. Journal of Applied Physics, 2008, 103, .	2.5	51
186	Superhydrophobic amorphous carbon/carbon nanotube nanocomposites. Applied Physics Letters, 2009, 94, .	3.3	51
187	Highly effective fungal inactivation in He+O2 atmospheric-pressure nonequilibrium plasmas. Physics of Plasmas, 2010, 17, 123502.	1.9	51
188	Nanoparticles in Cancer Imaging and Therapy. Journal of Nanomaterials, 2012, 2012, 1-7.	2.7	51
189	MnOx/carbon nanotube/reduced graphene oxide nanohybrids as high-performance supercapacitor electrodes. NPG Asia Materials, 2014, 6, e140-e140.	7.9	51
190	Shape-Uniform, High-Quality Monolayered MoS ₂ Crystals for Gate-Tunable Photoluminescence. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42121-42130.	8.0	51
191	ZIF-Derived Carbon Nanoarchitecture as a Bifunctional pH-Universal Electrocatalyst for Energy-Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 10044-10051.	6.7	51
192	Plasma synthesis of Pt/g-C3N4 photocatalysts with enhanced photocatalytic hydrogen generation. Journal of Alloys and Compounds, 2021, 873, 159871.	5.5	51
193	Conversion of Catalytically Inert 2D Bismuth Oxide Nanosheets for Effective Electrochemical Hydrogen Evolution Reaction Catalysis via Oxygen Vacancy Concentration Modulation. Nano-Micro Letters, 2022, 14, 90.	27.0	51
194	Plasma-driven self-organization of Ni nanodot arrays on Si(100). Applied Physics Letters, 2008, 93, 183102.	3.3	50
195	Real-time monitoring of nucleation-growth cycle of carbon nanoparticles in acetylene plasmas. Journal of Applied Physics, 2011, 109, .	2.5	50
196	Microplasma-chemical synthesis and tunable real-time plasmonic responses of alloyed Au _x Ag _{1â^2x} nanoparticles. Chemical Communications, 2014, 50, 3144-3147.	4.1	50
197	Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells. Physics of Plasmas, 2015, 22, 122003.	1.9	50
198	Interaction between functionalized graphene and sulfur compounds in a lithium–sulfur battery – a density functional theory investigation. RSC Advances, 2018, 8, 2271-2279.	3.6	50

#	Article	IF	CITATIONS
199	Ab initio atomistic insights into lead-free formamidinium based hybrid perovskites for photovoltaics and optoelectronics. Computational Materials Science, 2019, 169, 109118.	3.0	50
200	Reversible Intercalation of Multivalent Al ³⁺ lons into Potassiumâ€Rich Cryptomelane Nanowires for Aqueous Rechargeable Alâ€lon Batteries. ChemSusChem, 2019, 12, 3753-3760.	6.8	50
201	Cold Atmospheric Plasma: A Promising Controller of Cancer Cell States. Cancers, 2020, 12, 3360.	3.7	50
202	Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB ₃ monolayer. Nanoscale Horizons, 2021, 6, 43-48.	8.0	50
203	Self-organized nanoarrays: Plasma-related controls. Pure and Applied Chemistry, 2008, 80, 1909-1918.	1.9	49
204	Dielectric barrier discharge plasma in Ar/O2 promoting apoptosis behavior in A549 cancer cells. Applied Physics Letters, 2011 , 99 , .	3.3	49
205	Spectral characteristics of cotton seeds treated by a dielectric barrier discharge plasma. Scientific Reports, 2017, 7, 5601.	3.3	48
206	Dielectrophoresis-based microfluidic platforms for cancer diagnostics. Biomicrofluidics, 2018, 12, 011503.	2.4	48
207	Cross-linked trimetallic nanopetals for electrocatalytic water splitting. Journal of Power Sources, 2018, 390, 224-233.	7.8	47
208	Nb-doped layered FeNi phosphide nanosheets for highly efficient overall water splitting under high current densities. Journal of Materials Chemistry A, 2021, 9, 9918-9926.	10.3	47
209	Self-organized carbon connections between catalyst particles on a silicon surface exposed to atmospheric-pressure Ar+CH4 microplasmas. Carbon, 2009, 47, 2379-2390.	10.3	46
210	Atmospheric-Microplasma-Assisted Nanofabrication: Metal and Metal–Oxide Nanostructures and Nanoarchitectures. IEEE Transactions on Plasma Science, 2009, 37, 1027-1033.	1.3	46
211	Plasma heating effects in catalyzed growth of carbon nanofibres. Journal Physics D: Applied Physics, 2009, 42, 015208.	2.8	46
212	Silicon on silicon: self-organized nanotip arrays formed in reactive Ar+H ₂ plasmas. Nanotechnology, 2010, 21, 025605.	2.6	46
213	Hexagonal Sphericon Hematite with High Performance for Water Oxidation. Advanced Materials, 2017, 29, 1703792.	21.0	46
214	Growth kinetics of carbon nanowall-like structures in low-temperature plasmas. Physics of Plasmas, 2007, 14, 063502.	1.9	45
215	Modelling of arc welding: The importance of including the arc plasma in the computational domain. Vacuum, 2010, 85, 579-584.	3.5	45
216	Controlled synthesis of a large fraction of metallic single-walled carbon nanotube and semiconducting carbon nanowire networks. Nanoscale, 2011, 3, 3214.	5.6	45

#	Article	IF	Citations
217	Plasma-Enabled Growth of Single-Crystalline SiC/AlSiC Coreâ€"Shell Nanowires on Porous Alumina Templates. Crystal Growth and Design, 2012, 12, 2917-2922.	3.0	45
218	Plasma-enabled, catalyst-free growth of carbon nanotubes on mechanically-written Si features with arbitrary shape. Carbon, 2012, 50, 325-329.	10.3	45
219	From short pulses to short breaks: exotic plasma bullets via residual electron control. Scientific Reports, 2013, 3, 1599.	3.3	45
220	Plasma-enabled sustainable elemental lifecycles: honeycomb-derived graphenes for next-generation biosensors and supercapacitors. Green Chemistry, 2015, 17, 2164-2171.	9.0	45
221	More from Less but Precise: Industry-relevant Pseudocapacitance by Atomically-precise Mass-loading MnO2 within Multifunctional MXene Aerogel. Journal of Power Sources, 2021, 492, 229639.	7.8	45
222	Hydrogen in plasma-nanofabrication: Selective control of nanostructure heating and passivation. Applied Physics Letters, 2010, 96, .	3.3	44
223	The production mechanisms of OH radicals in a pulsed direct current plasma jet. Physics of Plasmas, 2014, 21, .	1.9	44
224	Low-temperature plasma processing for Si photovoltaics. Materials Science and Engineering Reports, 2014, 78, 1-29.	31.8	44
225	Multifunctional solar bamboo straw: Multiscale 3D membrane for self-sustained solar-thermal water desalination and purification and thermoelectric waste heat recovery and storage. Carbon, 2021, 171, 359-367.	10.3	44
226	Plasma/ion-controlled metal catalyst saturation: Enabling simultaneous growth of carbon nanotube/nanocone arrays. Applied Physics Letters, 2008, 92, 063108.	3.3	43
227	Temperature-dependent growth mechanisms of low-dimensional ZnO nanostructures. CrystEngComm, 2011, 13, 3455.	2.6	43
228	Uniform, Dense Arrays of Vertically Aligned, Large-Diameter Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2012, 134, 6018-6024.	13.7	43
229	Harnessing the Influence of Reactive Edges and Defects of Graphene Substrates for Achieving Complete Cycle of Roomâ€Temperature Molecular Sensing. Small, 2013, 9, 3993-3999.	10.0	43
230	Efficient Electrocatalytic Oxygen Evolution at Extremely High Current Density over 3D Ultrasmall Zeroâ€Valent Ironâ€Coupled Nickel Sulfide Nanosheets. ChemElectroChem, 2018, 5, 3866-3872.	3.4	43
231	Plasma-controlled nanocrystallinity and phase composition of TiO2: A smart way to enhance biomimetic response. Journal of Biomedical Materials Research - Part A, 2007, 81A, 453-464.	4.0	42
232	Control of morphology and nucleation density of iron oxide nanostructures by electric conditions on iron surfaces exposed to reactive oxygen plasmas. Applied Physics Letters, 2009, 94, 211502.	3.3	42
233	Valence Alignment of Mixed Ni–Fe Hydroxide Electrocatalysts through Preferential Templating on Graphene Edges for Enhanced Oxygen Evolution. ACS Nano, 2020, 14, 11327-11340.	14.6	42
234	Degradation of cefixime antibiotic in water by atmospheric plasma bubbles: Performance, degradation pathways and toxicity evaluation. Chemical Engineering Journal, 2021, 421, 127730.	12.7	42

#	Article	IF	Citations
235	Sustainable plasma-catalytic bubbles for hydrogen peroxide synthesis. Green Chemistry, 2021, 23, 2977-2985.	9.0	42
236	Surface fluxes of Si and C adatoms at initial growth stages of SiC quantum dots. Journal of Applied Physics, 2007, 101, 044306.	2.5	41
237	Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing. Chemical Communications, 2013, 49, 2861.	4.1	41
238	Ultra-small photoluminescent silicon-carbide nanocrystals by atmospheric-pressure plasmas. Nanoscale, 2016, 8, 17141-17149.	5.6	41
239	Plasma-doping-enhanced overall water splitting: case study of NiCo hydroxide electrocatalyst. Catalysis Today, 2019, 337, 147-154.	4.4	41
240	Superstructure-Enabled Anti-Fouling Membrane for Efficient Photothermal Distillation. ACS Sustainable Chemistry and Engineering, 2019, 7, 20151-20158.	6.7	41
241	Hexagonal Molybdenum Trioxide (hâ€MoO ₃) as an Electrode Material for Rechargeable Aqueous Aluminumâ€ion Batteries. ChemElectroChem, 2019, 6, 6002-6008.	3.4	41
242	Energy pooling mechanism for catalyst-free methane activation in nanosecond pulsed non-thermal plasmas. Chemical Engineering Journal, 2020, 396, 125185.	12.7	41
243	Isolation and Detection of Exosomes Using Fe ₂ O ₃ Nanoparticles. ACS Applied Nano Materials, 2021, 4, 1175-1186.	5.0	41
244	Spatially averaged model of complex-plasma discharge with self-consistent electron energy distribution. Physical Review E, 2004, 70, 046403.	2.1	40
245	Plasma-deposited Ge nanoisland films on Si: is Stranski–Krastanow fragmentation unavoidable?. Journal Physics D: Applied Physics, 2008, 41, 092001.	2.8	40
246	Controlled-bandgap silicon nitride nanomaterials: deterministic nitrogenation in high-density plasmas. Journal of Materials Chemistry, 2010, 20, 5853.	6.7	40
247	Self-organized ZnO nanodot arrays: Effective control using SiN <i>x</i> interlayers and low-temperature plasmas. Journal of Applied Physics, 2012, 111, .	2.5	40
248	Histone lactylation: epigenetic mark of glycolytic switch. Trends in Genetics, 2022, 38, 124-127.	6.7	40
249	<i>Colloquium</i> : Nanoplasmas generated by intense radiation. Reviews of Modern Physics, 2016, 88, .	45.6	39
250	Firstâ€Principles Study of Superconducting ScRhP and ScIrP pnictides. Physica Status Solidi (B): Basic Research, 2017, 254, 1700336.	1.5	39
251	Hierarchical nanocarbon-MnO2 electrodes for enhanced electrochemical capacitor performance. Energy Storage Materials, 2019, 16, 607-618.	18.0	39
252	Graphene nanowalls conformally coated with amorphous/ nanocrystalline Si as high-performance binder-free nanocomposite anode for lithium-ion batteries. Journal of Power Sources, 2019, 437, 226909.	7.8	39

#	Article	IF	Citations
253	Microplasma Cross-Linked Graphene Oxide-Gelatin Hydrogel for Cartilage Reconstructive Surgery. ACS Applied Materials & Diterfaces, 2020, 12, 86-95.	8.0	39
254	<i>Invivo</i> Pen: A novel plasma source for <i>in vivo</i> cancer treatment. Journal of Cancer, 2020, 11, 2273-2282.	2.5	39
255	RbSnX ₃ (X = Cl, Br, I): promising lead-free metal halide perovskites for photovoltaics and optoelectronics. RSC Advances, 2022, 12, 7497-7505.	3.6	39
256	Thermophoretic control of building units in the plasma-assisted deposition of nanostructured carbon films. Journal of Applied Physics, 2004, 96, 4421-4428.	2.5	38
257	High-rate, low-temperature synthesis of composition controlled hydrogenated amorphous silicon carbide films in low-frequency inductively coupled plasmas. Journal Physics D: Applied Physics, 2008, 41, 055406.	2.8	38
258	Thin Single-Walled Carbon Nanotubes with Narrow Chirality Distribution: Constructive Interplay of Plasma and Gibbs–Thomson Effects. ACS Nano, 2011, 5, 8372-8382.	14.6	38
259	Construction of MoO ₂ Quantum Dot–Graphene and MoS ₂ Nanoparticle–Graphene Nanoarchitectures toward Ultrahigh Lithium Storage Capability. ACS Applied Materials & Diterraces, 2017, 9, 28441-28450.	8.0	38
260	The energy tree: Non-equilibrium energy transfer in collision-dominated plasmas. Physics Reports, 2018, 770-772, 1-45.	25.6	38
261	Phenethylammonium bismuth halides: from single crystals to bulky-organic cation promoted thin-film deposition for potential optoelectronic applications. Journal of Materials Chemistry A, 2019, 7, 20733-20741.	10.3	38
262	Hierarchical porous bimetal-sulfide bi-functional nanocatalysts for hydrogen production by overall water electrolysis. Journal of Colloid and Interface Science, 2020, 560, 426-435.	9.4	38
263	Just add water to split water: ultrahigh-performance bifunctional electrocatalysts fabricated using eco-friendly heterointerfacing of NiCo diselenides. Journal of Materials Chemistry A, 2020, 8, 12035-12044.	10.3	38
264	Bimetal–Organic Frameworks from In Situ-Activated NiFe Foam for Highly Efficient Water Splitting. ACS Sustainable Chemistry and Engineering, 2021, 9, 1826-1836.	6.7	38
265	Single-Cell-Precision Microplasma-Induced Cancer Cell Apoptosis. PLoS ONE, 2014, 9, e101299.	2.5	38
266	Multifunctional three-dimensional nanodiamond-nanoporous alumina nanoarchitectures. Carbon, 2014, 75, 452-464.	10.3	37
267	The effects of plasma treatment on bacterial biofilm formation on vertically-aligned carbon nanotube arrays. RSC Advances, 2015, 5, 5142-5148.	3.6	37
268	Jetâ€ŧoâ€jet interactions in atmosphericâ€pressure plasma jet arrays for surface processing. Plasma Processes and Polymers, 2018, 15, 1700114.	3.0	37
269	Plasma Enabled Fe2O3/Fe3O4 Nano-aggregates Anchored on Nitrogen-doped Graphene as Anode for Sodium-lon Batteries. Nanomaterials, 2020, 10, 782.	4.1	37
270	Controllable Epitaxial Growth of Largeâ€Area MoS ₂ /WS ₂ Vertical Heterostructures by Confinedâ€Space Chemical Vapor Deposition. Small, 2021, 17, e2007312.	10.0	37

#	Article	IF	Citations
271	A kinetic model for an argon plasma containing dust grains. Physics of Plasmas, 2004, 11, 4959-4967.	1.9	36
272	Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform. Chemical Communications, 2012, 48, 2659.	4.1	36
273	Plasma Activated Oil: Fast Production, Reactivity, Stability, and Wound Healing Application. ACS Biomaterials Science and Engineering, 2019, 5, 1611-1622.	5.2	36
274	Hollow Ni–V–Mo Chalcogenide Nanopetals as Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 1622-1632.	6.7	36
275	2D atomic crystal molecular superlattices by soft plasma intercalation. Nature Communications, 2020, 11, 5960.	12.8	36
276	Compositional and crystallographic design of Ni-Co phosphide heterointerfaced nanowires for high-rate, stable hydrogen generation at industry-relevant electrolysis current densities. Nano Energy, 2022, 95, 106989.	16.0	36
277	Control of energy and matter at nanoscales: challenges and opportunities for plasma nanoscience in a sustainability age. Journal Physics D: Applied Physics, 2011, 44, 174003.	2.8	35
278	Large networks of vertical multi-layer graphenes with morphology-tunable magnetoresistance. Nanoscale, 2013, 5, 9283.	5.6	35
279	Atmosphericâ€Pressure Plasma―and TRAILâ€Induced Apoptosis in TRAILâ€Resistant Colorectal Cancer Cells. Plasma Processes and Polymers, 2015, 12, 574-582.	3.0	35
280	Translational plasma stomatology: applications of cold atmospheric plasmas in dentistry and their extension. High Voltage, 2017, 2, 188-199.	4.7	35
281	Plasma medicine: Opportunities for nanotechnology in a digital age. Plasma Processes and Polymers, 2020, 17, e2000097.	3.0	35
282	Plasma-Enabled Amorphous TiO ₂ Nanotubes as Hydrophobic Support for Molecular Sensing by SERS. ACS Applied Materials & Sensing by SERS. ACS Applied Ma	8.0	35
283	Microplasma-Enabled Graphene Quantum Dot-Wrapped Gold Nanoparticles with Synergistic Enhancement for Broad Band Photodetection. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28550-28560.	8.0	35
284	Epithelial-to-Mesenchymal Transition Enhances Cancer Cell Sensitivity to Cytotoxic Effects of Cold Atmospheric Plasmas in Breast and Bladder Cancer Systems. Cancers, 2021, 13, 2889.	3.7	35
285	Phase change material enhanced sustained and energy-efficient solar-thermal water desalination. Applied Energy, 2021, 301, 117463.	10.1	35
286	Nanocrystalline vanadium oxide films synthesized by plasma-assisted reactive rf sputtering deposition. Journal Physics D: Applied Physics, 2007, 40, 1085-1090.	2.8	34
287	Effect of doping with Co and/or Cu on electronic structure and optical properties of ZnO. Journal of Applied Physics, 2009, 105 , .	2.5	34
288	Raman-active wurtzite CdO nanophase and phonon signatures in CdO/ZnO heterostructures fabricated by nonequilibrium laser plasma ablation and stress control. Applied Physics Letters, 2011, 98, 133119.	3.3	34

#	Article	IF	Citations
289	Single-Step, Plasma-Enabled Reforming of Natural Precursors into Vertical Graphene Electrodes with High Areal Capacitance. ACS Sustainable Chemistry and Engineering, 2015, 3, 544-551.	6.7	34
290	Inorganic nanofilms for surface charge control on polymer surfaces by atmospheric-pressure plasma deposition. Journal of Applied Physics, 2017, 122, .	2.5	34
291	Spill-SOS: Self-Pumping Siphon-Capillary Oil Recovery. ACS Nano, 2019, 13, 13027-13036.	14.6	34
292	Beyond lotus: Plasma nanostructuring enables efficient energy and water conversion and use. Nano Energy, 2019, 66, 104125.	16.0	34
293	First-principles study of elastic, electronic, optical and thermoelectric properties of newly synthesized K2Cu2GeS4 chalcogenide. Journal of Alloys and Compounds, 2019, 781, 37-46.	5.5	34
294	Up-conversion hybrid nanomaterials for light- and heat-driven applications. Progress in Materials Science, 2021, 121, 100838.	32.8	34
295	Plasma Nanoscience: From Nature's Mastery to Deterministic Plasma-Aided Nanofabrication. IEEE Transactions on Plasma Science, 2007, 35, 127-136.	1.3	33
296	Recent advances in vacuum sciences and applications. Journal Physics D: Applied Physics, 2014, 47, 153001.	2.8	33
297	Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death. Journal Physics D: Applied Physics, 2015, 48, 464002.	2.8	33
298	Flower-like Cu5Sn2S7/ZnS nanocomposite for high performance supercapacitor. Chinese Chemical Letters, 2019, 30, 1115-1120.	9.0	33
299	Effect of Coulomb blockade, gold resistance, and thermal expansion on the electrical resistance of ultrathin gold films. Physical Review B, 2011, 84, .	3.2	32
300	SWCNT Networks on Nanoporous Silica Catalyst Support: Morphological and Connectivity Control for Nanoelectronic, Gas-Sensing, and Biosensing Devices. ACS Nano, 2012, 6, 5809-5819.	14.6	32
301	Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@SiC@C for high-performance lithium ion batteries. Journal of Alloys and Compounds, 2015, 646, 966-972.	5.5	32
302	Tuneable fluidics within graphene nanogaps for water purification and energy storage. Nanoscale Horizons, 2017, 2, 89-98.	8.0	32
303	Highâ€Performance Plasmaâ€Enabled Biorefining of Microalgae to Valueâ€Added Products. ChemSusChem, 2019, 12, 4976-4985.	6.8	32
304	Plasma modification of a Ni based metal–organic framework for efficient hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 8129-8135.	10.3	32
305	Plasma-Made Graphene Nanostructures with Molecularly Dispersed F and Na Sites for Solar Desalination of Oil-Contaminated Seawater with Complete In-Water and In-Air Oil Rejection. ACS Applied Materials & Desamp; Interfaces, 2020, 12, 38512-38521.	8.0	32
306	Nanoconfined fusion of g-C3N4 within edge-rich vertically oriented graphene hierarchical networks for high-performance photocatalytic hydrogen evolution utilizing superhydrophillic and superaerophobic responses in seawater. Applied Catalysis B: Environmental, 2021, 280, 119461.	20.2	32

#	Article	IF	CITATIONS
307	Anion-kinetics-selective graphene anode and cation-energy-selective MXene cathode for high-performance capacitive deionization. Energy Storage Materials, 2022, 50, 395-406.	18.0	32
308	Low- and high-temperature controls in carbon nanofiber growth in reactive plasmas. Nanotechnology, 2010, 21, 455605.	2.6	31
309	Plasma-made silicon nanograss and related nanostructures. Journal Physics D: Applied Physics, 2011, 44, 174010.	2.8	31
310	Interface control of surface photochemical reactivity in ultrathin epitaxial ferroelectric films. Applied Physics Letters, 2013, 102, .	3.3	31
311	Valorization of native sugarcane bagasse lignin to bio-aromatic esters/monomers <i>via</i> a one pot oxidation–hydrogenation process. Green Chemistry, 2019, 21, 861-873.	9.0	31
312	Electronic, mechanical, optical and photocatalytic properties of perovskite RbSr2Nb3O10 compound. Journal of Alloys and Compounds, 2021, 867, 159077.	5 . 5	31
313	Future antiviral polymers by plasma processing. Progress in Polymer Science, 2021, 118, 101410.	24.7	31
314	Plasmas meet plasmonics. European Physical Journal D, 2012, 66, 1.	1.3	30
315	Surface Chemical Modification of Carbon Nanowalls for Wide-Range Control of Surface Wettability. Plasma Processes and Polymers, 2013, 10, 582-592.	3.0	30
316	Effect of dielectric and conductive targets on plasma jet behaviour and thin film properties. Journal Physics D: Applied Physics, 2019, 52, 074002.	2.8	30
317	Mulberryâ€Inspired Nickelâ€Niobium Phosphide on Plasmaâ€Defectâ€Engineered Carbon Support for Highâ€Performance Hydrogen Evolution. Small, 2020, 16, e2004843.	10.0	30
318	In-Situ-Engineered 3D Cu ₃ Se ₂ @CoSe ₂ –NiSe ₂ Nanostructures for Highly Efficient Electrocatalytic Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 17215-17224.	6.7	30
319	Structural, electronic and optical properties of lead-free antimony-copper based hybrid double perovskites for photovoltaics and optoelectronics by first principles calculations. Computational Materials Science, 2021, 186, 110009.	3.0	30
320	Microplasma Band Structure Engineering in Graphene Quantum Dots for Sensitive and Wide-Range pH Sensing. ACS Applied Materials & Sensing. 14, 1670-1683.	8.0	30
321	Carbon saturation of arrays of Ni catalyst nanoparticles of different size and pattern uniformity on a silicon substrate. Nanotechnology, 2008, 19, 335703.	2.6	29
322	Microstructure and electromagnetic characteristics of Ni nanoparticle film coated carbon microcoils. Journal of Alloys and Compounds, 2009, 478, 796-800.	5.5	29
323	High-rate, room temperature plasma-enhanced deposition of aluminum-doped zinc oxide nanofilms for solar cell applications. Journal of Alloys and Compounds, 2009, 485, 379-384.	5.5	29
324	Controlled electronic transport in single-walled carbon nanotube networks: Selecting electron hopping and chemical doping mechanisms. Applied Physics Letters, 2010, 96, 233115.	3.3	29

#	Article	IF	Citations
325	Open-air direct current plasma jet: Scaling up, uniformity, and cellular control. Physics of Plasmas, 2012, 19, .	1.9	29
326	Characterization of a DC-driven microplasma between a capillary tube and water surface. Europhysics Letters, 2013, 102, 15002.	2.0	29
327	Superplastic nanoscale pore shaping by ion irradiation. Nature Communications, 2018, 9, 835.	12.8	29
328	Mode transition and plasma characteristics of nanosecond pulse gas–liquid discharge: Effect of grounding configuration. Plasma Processes and Polymers, 2020, 17, 1900146.	3.0	29
329	Nanoconfined Synthesis of Nitrogen-Rich Metal-Free Mesoporous Carbon Nitride Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 1439-1447.	5.1	29
330	Plasma-controlled surface wettability: recent advances and future applications. International Materials Reviews, 2023, 68, 82-119.	19.3	29
331	Photo-ionization and residual electron effects in guided streamers. Physics of Plasmas, 2014, 21, .	1.9	28
332	Active bioparticle manipulation in microfluidic systems. RSC Advances, 2016, 6, 113066-113094.	3.6	28
333	Towards universal plasma-enabled platform for the advanced nanofabrication: plasma physics level approach. Reviews of Modern Plasma Physics, 2018, 2, 1.	4.1	28
334	Two-Dimensional Alloying Molybdenum Tin Disulfide Monolayers with Fast Photoresponse. ACS Applied Materials & Discrete Samp; Interfaces, 2019, 11, 39077-39087.	8.0	28
335	Highly stable two-dimensional gold selenide with large in-plane anisotropy and ultrahigh carrier mobility. Nanoscale Horizons, 2020, 5, 366-371.	8.0	28
336	Reactive Plasmaâ€Aided RF Sputtering Deposition of Hydroxyapatite Bioâ€implant Coatings. Chemical Vapor Deposition, 2007, 13, 299-306.	1.3	27
337	Direct plasma printing of nano-gold from an inorganic precursor. Journal of Materials Chemistry C, 2019, 7, 6369-6374.	5.5	27
338	Atmospheric-pressure plasma jet deposition of bumpy coating improves polypropylene surface flashover performance in vacuum. Surface and Coatings Technology, 2020, 387, 125511.	4.8	27
339	Biowasteâ€Derived, Selfâ€Organized Arrays of Highâ€Performance 2D Carbon Emitters for Organic Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e1906176.	21.0	27
340	Dosing: The key to precision plasma oncology. Plasma Processes and Polymers, 2020, 17, 1900178.	3.0	27
341	Effects of Al substitution by Si in Ti3AlC2 nanolaminate. Scientific Reports, 2021, 11, 3410.	3.3	27
342	Utilization of plasma in water desalination and purification. Desalination, 2021, 500, 114903.	8.2	27

#	Article	IF	Citations
343	Customizing the microenvironment of CO ₂ electrocatalysis via threeâ€phase interface engineering. SmartMat, 2022, 3, 111-129.	10.7	27
344	Two-Phase-Interfaced, Graded-Permittivity Titania Electrical Insulation by Atmospheric Pressure Plasmas. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1900-1909.	8.0	27
345	Effect of Ion Current Density on the Properties of Vacuum Arc-Deposited TiN Coatings. IEEE Transactions on Plasma Science, 2013, 41, 3640-3644.	1.3	26
346	Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO ₂ (GeO ₂) _{0.13} /G anodes. Nanoscale, 2014, 6, 15020-15028.	5.6	26
347	Sustainable process for all-carbon electrodes: Horticultural doping of natural-resource-derived nano-carbons for high-performance supercapacitors. Carbon, 2015, 91, 386-394.	10.3	26
348	Controllable one-step growth of bilayer MoS ₂ â€"WS ₂ /WS ₂ heterostructures by chemical vapor deposition. Nanotechnology, 2018, 29, 455707.	2.6	26
349	Single-Crystalline Metal Oxide Nanostructures Synthesized by Plasma-Enhanced Thermal Oxidation. Nanomaterials, 2019, 9, 1405.	4.1	26
350	Plasmaâ€waterâ€based nitrogen fixation: Status, mechanisms, and opportunities. Plasma Processes and Polymers, 2022, 19, .	3.0	26
351	Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment. Journal of Alloys and Compounds, 2011, 509, 9329-9334.	5.5	25
352	Effect of a floating electrode on a plasma jet. Physics of Plasmas, 2013, 20, .	1.9	25
353	Hybrid graphite film–carbon nanotube platform for enzyme immobilization and protection. Carbon, 2013, 65, 287-295.	10.3	25
354	Thin insulating film deposition on copper by atmosphericâ€pressure plasmas. Plasma Processes and Polymers, 2017, 14, 1600248.	3.0	25
355	Resolving Bio–Nano Interactions of <i>E. coli</i> Bacteria–Dragonfly Wing Interface with Helium Ion and 3D-Structured Illumination Microscopy to Understand Bacterial Death on Nanotopography. ACS Biomaterials Science and Engineering, 2020, 6, 3925-3932.	5.2	25
356	Atmospheric-pressure non-equilibrium plasmas for effective abatement of pathogenic biological aerosols. Plasma Sources Science and Technology, 2021, 30, 053001.	3.1	25
357	Functionâ€Targeted Lanthanideâ€Anchored Polyoxometalate–Cyclodextrin Assembly: Discriminative Sensing of Inorganic Phosphate and Organophosphate. Advanced Functional Materials, 2021, 31, 2104572.	14.9	25
358	Extremely non-equilibrium synthesis of luminescent zinc oxide nanoparticles through energetic ion condensation in a dense plasma focus device. Journal Physics D: Applied Physics, 2009, 42, 155202.	2.8	24
359	Temperature-Dependent Properties of <i>nc</i> -Si Thin Films Synthesized in Low-Pressure, Thermally Nonequilibrium, High-Density Inductively Coupled Plasmas. Journal of Physical Chemistry C, 2009, 113, 14759-14764.	3.1	24
360	Nanoscale Plasma Chemistry Enables Fast, Size-Selective Nanotube Nucleation. Journal of the American Chemical Society, 2012, 134, 4303-4312.	13.7	24

#	Article	IF	CITATIONS
361	Carbon nanorods and graphene-like nanosheets by hot filament CVD: growth mechanisms and electron field emission. Journal of Materials Chemistry C, 2013 , 1 , 7703 .	5. 5	24
362	Feather-like He plasma plumes in surrounding N2 gas. Applied Physics Letters, 2013, 103, .	3.3	24
363	Uniform surface growth of copper oxide nanowires in radiofrequency plasma discharge and limiting factors. Physics of Plasmas, 2014, 21, .	1.9	24
364	Multipurpose nanoporous alumina–carbon nanowall bi-dimensional nano-hybrid platform via catalyzed and catalyst-free plasma CVD. Carbon, 2014, 78, 627-632.	10.3	24
365	Water-mediated and instantaneous transfer of graphene grown at 220 °C enabled by a plasma. Nanoscale, 2015, 7, 20564-20570.	5.6	24
366	Growth and photoluminescence of oriented MoSe ₂ nanosheets produced by hot filament CVD. RSC Advances, 2016, 6, 37236-37245.	3.6	24
367	Uniform atmospheric pressure plasmas in a 7 mm air gap. Applied Physics Letters, 2019, 115, .	3.3	24
368	In-package plasma: From reactive chemistry to innovative food preservation technologies. Trends in Food Science and Technology, 2022, 120, 59-74.	15.1	24
369	One-step in-situ sprouting high-performance NiCoSxSey bifunctional catalysts for water electrolysis at low cell voltages and high current densities. Chemical Engineering Journal, 2022, 435, 134859.	12.7	24
370	PECVD of Carbon Nanostructures in Hydrocarbon-Based RF Plasmas. Contributions To Plasma Physics, 2005, 45, 514-521.	1.1	23
371	Two-dimensional simulation of nanoparticle deposition from high-density plasmas on microstructured surfaces. Physics of Plasmas, 2007, 14, 043502.	1.9	23
372	Catalytic probes with nanostructured surface for gas/discharge diagnostics: a study of a probe signal behaviour. Journal Physics D: Applied Physics, 2008, 41, 115201.	2.8	23
373	Graphitization of nanocrystalline carbon microcoils synthesized by catalytic chemical vapor deposition. Journal of Applied Physics, 2008, 104, .	2.5	23
374	Kinetics of the initial stage of silicon surface oxidation: Deal–Grove or surface nucleation?. Applied Physics Letters, 2009, 95, 021502.	3.3	23
375	Structure of the magnetized sheath of a dusty plasma. Physics of Plasmas, 2010, 17, .	1.9	23
376	Thinning vertical graphenes, tuning electrical response: from semiconducting to metallic. Journal of Materials Chemistry, 2011, 21, 16339.	6.7	23
377	Control of ion density distribution by magnetic traps for plasma electrons. Journal of Applied Physics, 2012, 112, 073302.	2.5	23
378	Plasmonic Metamaterial Sensor with Ultraâ€High Sensitivity in the Visible Spectral Range. Advanced Optical Materials, 2015, 3, 750-755.	7.3	23

#	Article	IF	Citations
379	Prospects of e-beam evaporated molybdenum oxide as a hole transport layer for perovskite solar cells. Journal of Applied Physics, 2017, 122, .	2.5	23
380	Improved fermentation efficiency of S. cerevisiae by changing glycolytic metabolic pathways with plasma agitation. Scientific Reports, 2018, 8, 8252.	3.3	23
381	Structure and photoluminescence properties of MoO3â^'/graphene nanoflake hybrid nanomaterials formed via surface growth. Applied Surface Science, 2019, 480, 1054-1062.	6.1	23
382	Controllable Synthesis of Crystalline ReS _{2(1a^²} <i><i>>_x</i>₎Se₂<i>_x</i> Monolayers on Amorphous SiO₂/Si Substrates with Fast Photoresponse. Advanced Optical Materials, 2020, 8, 1901415.</i>	7.3	23
383	Application of Plasma-Printed Paper-Based SERS Substrate for Cocaine Detection. Sensors, 2021, 21, 810.	3.8	23
384	Facile synthesis of high-performance indium nanocrystals for selective CO2-to-formate electroreduction. Energy Conversion and Management, 2021, 231, 113847.	9.2	23
385	Reduced electric field and gas temperature effects on chemical product dynamics in air surface dielectric barrier discharges: from macro-physical parameters to micro-chemical mechanisms. Physical Chemistry Chemical Physics, 2022, 24, 8940-8949.	2.8	23
386	Behavior of the electron temperature in nonuniform complex plasmas. Physical Review E, 2006, 74, 036402.	2.1	22
387	Surface science of plasma exposed surfaces: A challenge for applied plasma science. Vacuum, 2008, 83, 4-10.	3.5	22
388	Low-pressure planar magnetron discharge for surface deposition and nanofabrication. Physics of Plasmas, 2010, 17 , .	1.9	22
389	Plasma nanofabrication and nanomaterials safety. Journal Physics D: Applied Physics, 2011, 44, 174019.	2.8	22
390	Enhanced electron field emission from plasma-nitrogenated carbon nanotips. Journal of Applied Physics, 2012, 111, 044317.	2.5	22
391	Plasma effects in semiconducting nanowire growth. Nanoscale, 2012, 4, 1497-1508.	5.6	22
392	Vertically-aligned graphene flakes on nanoporous templates: morphology, thickness, and defect level control by pre-treatment. Science and Technology of Advanced Materials, 2014, 15, 055009.	6.1	22
393	Formation and electron field emission of graphene films grown by hot filament chemical vapor deposition. Materials Chemistry and Physics, 2014, 144, 66-74.	4.0	22
394	Nanoscale thermodynamic aspects of plasma catalysis. Catalysis Today, 2015, 256, 23-28.	4.4	22
395	Structure and photoluminescence of boron-doped carbon nanoflakes grown by hot filament chemical vapour deposition. Journal of Materials Chemistry C, 2015, 3, 1106-1112.	5.5	22
396	Atmospheric Pressure Nonthermal Plasma Sources. , 2016, , 83-116.		22

#	Article	IF	CITATIONS
397	Conformal nanocarbon coating of alumina nanocrystals for biosensing and bioimaging. Carbon, 2017, 122, 422-427.	10.3	22
398	Plasma-electric field controlled growth of oriented graphene for energy storage applications. Journal Physics D: Applied Physics, 2018, 51, 145303.	2.8	22
399	Quantitative assessment of cold atmospheric plasma antiâ€cancer efficacy in tripleâ€negative breast cancers. Plasma Processes and Polymers, 2018, 15, 1800052.	3.0	22
400	Prussian blue analogue nanoenzymes mitigate oxidative stress and boost bio-fermentation. Nanoscale, 2019, 11, 19497-19505.	5.6	22
401	Nanosecond pulse plasma dry reforming of natural gas. Catalysis Today, 2020, 351, 103-112.	4.4	22
402	Microbial decontamination of chicken using atmospheric plasma bubbles. Plasma Processes and Polymers, 2021, 18, .	3.0	22
403	Surface-dominant pseudocapacitive supercapacitors with high specific energy and power for energy storage. Journal of Energy Storage, 2021, 42, 103084.	8.1	22
404	In-situ engineered heterostructured nickel tellur-selenide nanosheets for robust overall water splitting. Chemical Engineering Journal, 2022, 446, 137297.	12.7	22
405	Effect of hydrophilicity of carbon nanotube arrays on the release rate and activity of recombinant human bone morphogenetic protein-2. Nanotechnology, 2011, 22, 295712.	2.6	21
406	Room-temperature photoluminescence from nitrogenated carbon nanotips grown by plasma-enhanced hot filament chemical vapor deposition. Journal of Applied Physics, 2011, 110, 054323.	2.5	21
407	Bactericidal effects of plasma-modified surface chemistry of silicon nanograss. Journal Physics D: Applied Physics, 2016, 49, 304001.	2.8	21
408	Layer-controllable graphene by plasma thinning and post-annealing. Applied Surface Science, 2018, 441, 639-646.	6.1	21
409	Plasma Enabled Synthesis and Processing of Materials for Lithiumâ€ion Batteries. Advanced Materials Technologies, 2018, 3, 1800070.	5.8	21
410	Perspectives on plasma-assisted synthesis of N-doped nanoparticles as nanopesticides for pest control in crops. Reaction Chemistry and Engineering, 2020, 5, 1374-1396.	3.7	21
411	Carbon dots derived from human hair for ppb level chloroform sensing in water. Sustainable Materials and Technologies, 2020, 25, e00159.	3.3	21
412	Microsecond pulse gas–liquid discharges in atmospheric nitrogen and oxygen: Discharge mode, stability, and plasma characteristics. Plasma Processes and Polymers, 2021, 18, 2000135.	3.0	21
413	Effect of the surface oxide layer on the stability of black phosphorus. Applied Surface Science, 2021, 537, 147850.	6.1	21
414	Partial sulfur vacancies created by carbon–nitrogen deposition of MoS ₂ for high-performance overall electrocatalytic water splitting. Nanoscale, 2021, 13, 14506-14517.	5.6	21

#	Article	IF	Citations
415	Trimetallic Octahedral Ni–Co–W Phosphoxide Sprouted from Plasma-Defect-Engineered Ni–Co Support for Ultrahigh-Performance Electrocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 7454-7465.	6.7	21
416	Plasmaâ€activated medium induces apoptosis in chemotherapyâ€fesistant ovarian cancer cells: High selectivity and synergy with carboplatin. Plasma Processes and Polymers, 2021, 18, 2100074.	3.0	21
417	Microplasma-Tunable Graphene Quantum Dots for Ultrasensitive and Selective Detection of Cancer and Neurotransmitter Biomarkers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34572-34583.	8.0	21
418	Fourfold Polarizationâ€Sensitive Photodetector Based on GaTe/MoS ₂ van der Waals Heterojunction. Advanced Electronic Materials, 2022, 8, 2100673.	5.1	21
419	Highâ€performance water purification and desalination by solarâ€driven interfacial evaporation and photocatalytic <scp>VOC</scp> decomposition enabled by hierarchical <scp> TiO ₂ â€CuO </scp> nanoarchitecture. International Journal of Energy Research, 2022, 46, 1313-1326.	4.5	21
420	Etching and annealing treatment to improve the plasma-deposited SiOx film adhesion force. Surface and Coatings Technology, 2021, 427, 127840.	4.8	21
421	Insights into amoxicillin degradation in water by non-thermal plasmas. Chemosphere, 2022, 291, 132757.	8.2	21
422	Sustainable nitrogen fixation with nanosecond pulsed spark discharges: insights into free-radical-chain reactions. Green Chemistry, 2022, 24, 1534-1544.	9.0	21
423	Insights into generation of OH radicals in plasma jets with constant power: The effects of driving voltage and frequency. Vacuum, 2022, 198, 110901.	3.5	21
424	Carbon nanofiber growth in plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2008, 104, .	2.5	20
425	Unidirectional arrays of vertically standing graphenes in reactive plasmas. Nanoscale, 2011, 3, 4296.	5.6	20
426	Coupling of a single-photon emitter in nanodiamond to surface plasmons of a nanochannel-enclosed silver nanowire. Optics Express, 2014, 22, 15530.	3.4	20
427	Dense Plasma Focus-Based Nanofabrication of Ill–V Semiconductors: Unique Features and Recent Advances. Nanomaterials, 2016, 6, 4.	4.1	20
428	Hierarchical, Verticallyâ€Oriented Carbon Nanowall Foam Supercapacitor using Room Temperature Ionic Liquid Mixture for AC Line Filtering with Ultrahigh Energy Density. ChemElectroChem, 2019, 6, 2167-2173.	3.4	20
429	Bactericidal Silver Nanoparticles by Atmospheric Pressure Solution Plasma Processing. Nanomaterials, 2020, 10, 874.	4.1	20
430	Host receptors: the key to establishing cells with broad viral tropism for vaccine production. Critical Reviews in Microbiology, 2020, 46, 147-168.	6.1	20
431	Uniform and stable plasma reactivity: Effects of nanosecond pulses and oxygen addition in atmospheric-pressure dielectric barrier discharges. Journal of Applied Physics, 2021, 129, .	2.5	20
432	Multi-Modal Biological Destruction by Cold Atmospheric Plasma: Capability and Mechanism. Biomedicines, 2021, 9, 1259.	3.2	20

#	Article	IF	Citations
433	Plasma for biomedical decontamination: from plasma-engineered to plasma-active antimicrobial surfaces. Current Opinion in Chemical Engineering, 2022, 36, 100764.	7.8	20
434	Sustainable Ammonia Synthesis from Nitrogen and Water by One tep Plasma Catalysis. Energy and Environmental Materials, 2023, 6, .	12.8	20
435	Room-temperature, atmospheric plasma needle reduces adenovirus gene expression in HEK 293A host cells. Applied Physics Letters, 2011, 99, .	3.3	19
436	Deterministic control of structural and optical properties of plasma-grown vertical graphene nanosheet networks via nitrogen gas variation. Optical Materials Express, 2012, 2, 700.	3.0	19
437	Plasmaâ€Enabled Graded Nanotube Biosensing Arrays on a Si Nanodevice Platform: Catalystâ€Free Integration and In Situ Detection of Nucleation Events. Advanced Materials, 2013, 25, 69-74.	21.0	19
438	Chiral streamers. Physics of Plasmas, 2015, 22, .	1.9	19
439	Enhanced ultraviolet photocatalytic activity of Ag/ZnO nanoparticles synthesized by modified polymer-network gel method. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	19
440	Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption. Frontiers of Chemical Science and Engineering, 2019, 13, 340-349.	4.4	19
441	High-performance CoNb phosphide water splitting electrocatalyst on plasma-defect-engineered carbon cloth. Chemical Engineering Journal, 2022, 446, 137419.	12.7	19
442	Influence of hydrogen dilution on the growth of nanocrystalline silicon carbide films by low-frequency inductively coupled plasma chemical vapor deposition. Thin Solid Films, 2008, 516, 5991-5995.	1.8	18
443	Diffusivity of adatoms on plasma-exposed surfaces determined from the ionization energy approximation and ionic polarizability. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2267-2272.	2.1	18
444	Low-phosporous nickel-coated carbon microcoils: Controlling microstructure through an electroless plating process. Applied Surface Science, 2009, 255, 6888-6893.	6.1	18
445	Plasma-enabled growth of separated, vertically aligned copper-capped carbon nanocones on silicon. Applied Physics Letters, 2010, 97, 151503.	3.3	18
446	High-Voltage Insulation Organic-Inorganic Nanocomposites by Plasma Polymerization. Materials, 2014, 7, 563-575.	2.9	18
447	Hierarchical bi-dimensional alumina/palladium nanowire nano-architectures for hydrogen detection, storage and controlled release. International Journal of Hydrogen Energy, 2015, 40, 6165-6172.	7.1	18
448	Plasma-potentiated small moleculesâ€"possible alternative to antibiotics?. Nano Futures, 2017, 1, 025002.	2.2	18
449	Effect of Precursor on Antifouling Efficacy of Vertically-Oriented Graphene Nanosheets. Nanomaterials, 2017, 7, 170.	4.1	18
450	Hydrophobic surface modification of polymethyl methacrylate by two-dimensional plasma jet array at atmospheric pressure. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	18

#	Article	IF	CITATIONS
451	Linear-field plasma jet arrays excited by high-voltage alternating current and nanosecond pulses. Journal of Applied Physics, 2018, 124, .	2.5	18
452	Power-to-chemicals: Low-temperature plasma for lignin depolymerisation in ethanol. Bioresource Technology, 2020, 318, 123917.	9.6	18
453	Microplasma nanoengineering of emission-tuneable colloidal nitrogen-doped graphene quantum dots as smart environmental-responsive nanosensors and nanothermometers. Carbon, 2021, 185, 501-513.	10.3	18
454	Plasma-enabled liquefaction of lignocellulosic biomass: Balancing feedstock content for maximum energy yield. Renewable Energy, 2020, 157, 1061-1071.	8.9	18
455	Liquid-phase methane bubble plasma discharge for heavy oil processing: Insights into free radicals-induced hydrogenation. Energy Conversion and Management, 2021, 250, 114896.	9.2	18
456	Deterministic control of plasma-assembled self-organized Geâ^•Si quantum dot arrays. Journal of Applied Physics, 2007, 101, 094309.	2.5	17
457	Self-assembled low-dimensional nanomaterials via low-temperature plasma processing. Thin Solid Films, 2008, 516, 6609-6615.	1.8	17
458	Effect of Gas Pressure on Electron Field Emission from Carbon Nanotube Forests. Journal of Nanoscience and Nanotechnology, 2010, 10, 6575-6579.	0.9	17
459	Structural, electronic, and optical properties of wurtzite and rocksalt InN under pressure. Physical Review B, 2010, 81, .	3.2	17
460	Solitary filamentary structures and nanosecond dynamics in atmospheric-pressure plasmas driven by tailored dc pulses. Applied Physics Letters, $2011, 99, \ldots$	3.3	17
461	Energy and matter-efficient size-selective growth of thin quantum wires in a plasma. Applied Physics Letters, 2011, 98, 033104.	3.3	17
462	Optical coupling of gold nanoparticles on vertical graphenes to maximize SERS response. Optics Letters, 2014, 39, 2334.	3.3	17
463	Non-equilibrium plasma prevention of Schistosoma japonicum transmission. Scientific Reports, 2016, 6, 35353.	3.3	17
464	Non-equilibrium synergistic effects in atmospheric pressure plasmas. Scientific Reports, 2018, 8, 4783.	3.3	17
465	Large-size Mo1-xWxS2 and W1-xMoxS2 (x = 0–0.5) monolayers by confined-space chemical vapor deposition. Applied Surface Science, 2018, 457, 591-597.	6.1	17
466	Gasâ€phase peroxynitrite generation using dielectric barrier discharge at atmospheric pressure: A prospective sterilizer. Plasma Processes and Polymers, 2021, 18, e2100016.	3.0	17
467	Bioinspired Robust Mechanical Properties for Advanced Materials. Small Structures, 2022, 3, .	12.0	17
468	Lowâ€Temperature PECVD of Nanodeviceâ€Grade ncâ€3Câ€SiC. Chemical Vapor Deposition, 2007, 13, 561-566.	1.3	16

#	Article	IF	CITATIONS
469	Nanosphere monolayer-templated, ion-assisted nanofeature etching in dielectric materials: a numerical simulation of nanoscale ion flux topography. Nanotechnology, 2008, 19, 155304.	2.6	16
470	Growth of carbon nanocone arrays on a metal catalyst: The effect of carbon flux ionization. Physics of Plasmas, 2008, 15, .	1.9	16
471	3-Orders-of-magnitude density control of single-walled carbon nanotube networks by maximizing catalyst activation and dosing carbon supply. Nanoscale, 2011, 3, 4848.	5.6	16
472	Plasma enables edge-to-center-oriented graphene nanoarrays on Si nanograss. Applied Physics Letters, 2012, 100, .	3.3	16
473	Multiband photoluminescence from carbon nanoflakes synthesized by hot filament CVD: towards solid-state white light sources. Journal of Materials Chemistry C, 2014, 2, 2851-2858.	5 . 5	16
474	Plasma-chemical synthesis, structure and photoluminescence properties of hybrid graphene nanoflake–BNCO nanowall systems. Journal of Materials Chemistry C, 2016, 4, 9788-9797.	5.5	16
475	Plasma-digital nexus: plasma nanotechnology for the digital manufacturing age. Reviews of Modern Plasma Physics, 2020, 4, 1.	4.1	16
476	Monochromatic Blue and Switchable Blueâ€Green Carbon Quantum Dots by Roomâ€Temperature Air Plasma Processing. Advanced Materials Technologies, 2022, 7, 2100586.	5.8	16
477	A thermally insulating vermiculite nanosheet–epoxy nanocomposite paint as a fire-resistant wood coating. Nanoscale Advances, 2021, 3, 4235-4243.	4.6	16
478	Bifunctional Catalytic Cooperativity on Nanoedge: Oriented Ce–Fe Bimetallic Fenton Electrocatalysts for Organic Pollutant Control. ACS ES&T Engineering, 2021, 1, 1618-1632.	7.6	16
479	Multidimensional Ni-Co-sulfide heterojunction electrocatalyst for highly efficient overall water splitting. Science China Materials, 2022, 65, 2421-2432.	6.3	16
480	On equilibrium states and dust charging in dusty plasmas. IEEE Transactions on Plasma Science, 2001, 29, 175-178.	1.3	15
481	Electron energy distribution function in low-pressure complex plasmas. Journal of Plasma Physics, 2005, 71, 217-224.	2.1	15
482	Ion-assisted functional monolayer coating of nanorod arrays in hydrogen plasmas. Physics of Plasmas, 2007, 14, 033503.	1.9	15
483	Ge/Si Quantum Dot Formation From Nonâ€Uniform Cluster Fluxes. Plasma Processes and Polymers, 2007, 4, 638-647.	3.0	15
484	Tailoring carbon nanotips in the plasma-assisted chemical vapor deposition: Effect of the process parameters. Journal of Applied Physics, 2009, 105, 083303.	2.5	15
485	p-type doping of ZnO by means of high-density inductively coupled plasmas. Materials Letters, 2009, 63, 972-974.	2.6	15
486	Pulsed iâ€PVD of Dielectric Nanodot Arrays Using a Nanoporous Template. Plasma Processes and Polymers, 2009, 6, 161-169.	3.0	15

#	Article	IF	Citations
487	Gold nanoresistors with near-constant resistivity in the cryogenic-to-room temperature range. Journal of Applied Physics, 2011, 110, 023303.	2.5	15
488	Sub-oxide-to-metallic, uniformly-nanoporous crystalline nanowires by plasma oxidation and electron reduction. Chemical Communications, 2012, 48, 11070.	4.1	15
489	Multifunctional Threeâ€Dimensional Tâ€Junction Graphene Microâ€Wells: Energyâ€Efficient, Plasmaâ€Enabled Growth and Instant Waterâ€Based Transfer for Flexible Device Applications. Advanced Functional Materials, 2014, 24, 6114-6122.	14.9	15
490	Organic/Hybrid Nanoparticles and Singleâ€Walled Carbon Nanotubes: Preparation Methods and Chiral Applications. Chirality, 2014, 26, 683-691.	2.6	15
491	Plasma Polymer-coated on Nanoparticles to Improve Dielectric and Electrical Insulation Properties of Nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 548-555.	2.9	15
492	Plasma-produced phase-pure cuprous oxide nanowires for methane gas sensing. Journal of Applied Physics, 2014, 115, .	2.5	15
493	Contribution of radicals and ions in catalyzed growth of single-walled carbon nanotubes from low-temperature plasmas. Physics of Plasmas, 2015, 22, .	1.9	15
494	Plasma effects in aligned carbon nanoflake growth by plasma-enhanced hot filament chemical vapor deposition. Applied Surface Science, 2015, 325, 251-257.	6.1	15
495	Structure and photoluminescence properties of carbon nanotip-vertical graphene nanohybrids. Journal of Applied Physics, 2016, 119, .	2.5	15
496	Novel biomaterials: plasma-enabled nanostructures and functions. Journal Physics D: Applied Physics, 2016, 49, 273001.	2.8	15
497	Plasma medicine for neuroscience—an introduction. Chinese Neurosurgical Journal, 2019, 5, 25.	0.9	15
498	Direct conversion of metal organic frameworks into ultrafine phosphide nanocomposites in multicomponent plasma for wide pH hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 10402-10408.	10.3	15
499	Focused Plasma- and Pure Water-Enabled, Electrode-Emerged Nanointerfaced NiCo Hydroxide–Oxide for Robust Overall Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 45566-45577.	8.0	15
500	Lysine Acetylation, Cancer Hallmarks and Emerging Onco-Therapeutic Opportunities. Cancers, 2022, 14, 346.	3.7	15
501	High-efficiency oxygen evolution catalyzed by Sn–Co–Ni phosphide with oriented crystal phases. Journal of Materials Chemistry A, 2022, 10, 13448-13455.	10.3	15
502	Nanoparticle-enhanced multifunctional nanocarbonsâ€"recent advances on electrochemical energy storage applications. Journal Physics D: Applied Physics, 2022, 55, 413001.	2.8	15
503	Effect of elemental composition and size on electron confinement in self-assembled SiC quantum dots: A combinatorial approach. Journal of Applied Physics, 2009, 105, 094314.	2.5	14
504	Rapid, simultaneous activation of thin nanowire growth in low-temperature, low-pressure chemically active plasmas. Journal of Materials Chemistry, 2011, 21, 8183.	6.7	14

#	Article	IF	CITATIONS
505	Heating and Plasma Sheath Effects in Lowâ€Temperature, Plasmaâ€Assisted Growth of Carbon Nanofibers. Plasma Processes and Polymers, 2011, 8, 386-400.	3.0	14
506	Tuning of magnetization in vertical graphenes by plasma-enabled chemical conversion of organic precursors with different oxygen content. Chemical Communications, 2013, 49, 11635.	4.1	14
507	Designing Atmospheric-Pressure Plasma Sources for Surface Engineering of Nanomaterials. Plasma Chemistry and Plasma Processing, 2013, 33, 479-490.	2.4	14
508	Emerging Stem Cell Controls: Nanomaterials and Plasma Effects. Journal of Nanomaterials, 2013, 2013, 1-15.	2.7	14
509	Defects induced ferromagnetism in plasma-enabled graphene nanopetals. Applied Physics Letters, 2014, 104, 092417.	3.3	14
510	Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids. Nanoscale, 2015, 7, 5998-6006.	5.6	14
511	Structure and photoluminescence of molybdenum selenide nanomaterials grown by hot filament chemical vapor deposition. Journal of Alloys and Compounds, 2015, 647, 734-739.	5.5	14
512	Conversion of vertically-aligned boron nitride nanowalls to photoluminescent CN compound nanorods: Efficient composition and morphology control via plasma technique. Carbon, 2016, 109, 352-362.	10.3	14
513	Plasmaâ€Produced Vertical Carbonous Nanoflakes for Liâ€lon Batteries. Plasma Processes and Polymers, 2016, 13, 1008-1014.	3.0	14
514	Plasma-assisted ALD to functionalize PET: towards new generation flexible gadgets. Flexible and Printed Electronics, 2017, 2, 022001.	2.7	14
515	C and O doped BN nanoflake and nanowire hybrid structures for tuneable photoluminescence. Journal of Alloys and Compounds, 2017, 705, 691-699.	5.5	14
516	Cosmetic reconstruction in breast cancer patients: Opportunities for nanocomposite materials. Acta Biomaterialia, 2019, 86, 41-65.	8.3	14
517	Direct Measurement of the Contents, Thickness, and Internal Pressure of Molybdenum Disulfide Nanoblisters. Nano Letters, 2020, 20, 3478-3484.	9.1	14
518	Plasma-engineered bifunctional cobalt–metal organic framework derivatives for high-performance complete water electrolysis. Nanoscale, 2021, 13, 6201-6211.	5.6	14
519	CO2 reforming of CH4 in single and double dielectric barrier discharge reactors: Comparison of discharge characteristics and product distribution. Journal of CO2 Utilization, 2021, 53, 101703.	6.8	14
520	Power-to-decarbonization: Mesoporous carbon-MgO nanohybrid derived from plasma-activated seawater salt-loaded biomass for efficient CO2 capture. Journal of CO2 Utilization, 2021, 53, 101711.	6.8	14
521	Large-scale ion generation for precipitation of atmospheric aerosols. Atmospheric Chemistry and Physics, 2020, 20, 11717-11727.	4.9	14
522	Dynamics of mode transitions in inductively-coupled plasmas. IEEE Transactions on Plasma Science, 2002, 30, 128-129.	1.3	13

#	Article	IF	Citations
523	Computational plasma nanoscience: Where plasma physics meets surface science. Computer Physics Communications, 2007, 177, 110-113.	7. 5	13
524	Plasma-controlled adatom delivery and (re)distribution: Enabling uninterrupted, low-temperature growth of ultralong vertically aligned single walled carbon nanotubes. Applied Physics Letters, 2008, 93, .	3.3	13
525	Plasma-enabled growth of ultralong straight, helical, and branched silica photonic nanowires. Journal of Applied Physics, 2008, 104, 033301.	2.5	13
526	Plasma-controlled metal catalyst saturation and the initial stage of carbon nanostructure array growth. Journal of Applied Physics, 2008, 104, .	2.5	13
527	Nanopore processing in dielectric materials and dielectric template-assisted nanoarray synthesis: Using pulsed bias to enhance process throughput and precision. Applied Physics Letters, 2008, 92, 223104.	3.3	13
528	Modes of nanotube growth in plasmas and reasons for single-walled structure. Journal Physics D: Applied Physics, 2008, 41, 132004.	2.8	13
529	Self-organization in arrays of surface-grown nanoparticles: characterization, control, driving forces. Journal Physics D: Applied Physics, 2011, 44, 174020.	2.8	13
530	Magnetic control of breakdown: Toward energy-efficient hollow-cathode magnetron discharges. Journal of Applied Physics, 2011, 109, .	2.5	13
531	Controlled electroluminescence of n-ZnMgO/p-GaN light-emitting diodes. Applied Physics Letters, 2012, 101, .	3.3	13
532	High Pseudocapacitive Performance of MnO ₂ Nanowires on Recyclable Electrodes. ChemSusChem, 2016, 9, 1020-1026.	6.8	13
533	Nanostructured Graphene Surfaces Promote Different Stages of Bone Cell Differentiation. Nano-Micro Letters, 2018, 10, 47.	27.0	13
534	Plasma Enabled Conformal and Damage Free Encapsulation of Fragile Molecular Matter: from Surfaceâ€Supported to Onâ€Device Nanostructures. Advanced Functional Materials, 2019, 29, 1903535.	14.9	13
535	Vertical graphene nano-antennas for solar-to-hydrogen energy conversion. Solar Energy, 2020, 208, 379-387.	6.1	13
536	Atmospheric plasma VUV photon emission. Plasma Sources Science and Technology, 2020, 29, 065001.	3.1	13
537	Atmospheric-pressure plasma seawater desalination: Clean energy, agriculture, and resource recovery nexus for a blue planet. Sustainable Materials and Technologies, 2020, 25, e00181.	3.3	13
538	Surface plasma discharges for the preservation of fresh-cut apples: microbial inactivation and quality attributes. Journal Physics D: Applied Physics, 2020, 53, 174003.	2.8	13
539	Efficiency enhancement of low-cost metal free dye sensitized solar cells via non-thermal atmospheric pressure plasma surface treatment. Solar Energy, 2021, 215, 367-374.	6.1	13
540	Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications. Frontiers of Chemical Science and Engineering, 2022, 16, 475-483.	4.4	13

#	Article	IF	CITATIONS
541	Photo-electric capacitive deionization enabled by solar-driven nano-ionics on the edges of plasma-made vertical graphenes. Chemical Engineering Journal, 2021, 422, 130156.	12.7	13
542	Morphological Characterization of Graphene Flake Networks Using Minkowski Functionals. Graphene, 2016, 05, 25-34.	1.0	13
543	Continuous microflow synthesis of fluorescent phosphorus and nitrogen co-doped carbon quantum dots. Chemical Engineering Research and Design, 2022, 178, 395-404.	5.6	13
544	Nanoparticle manipulation in the near-substrate areas of low-temperature, high-density rf plasmas. Physics of Plasmas, 2005, 12, 103507.	1.9	12
545	Templated iâ€PVD of Metallic Nanodot Arrays. Plasma Processes and Polymers, 2007, 4, 612-620.	3.0	12
546	Nanoscale surface and interface engineering: Why plasma-aided?. Surface and Coatings Technology, 2008, 202, 5314-5318.	4.8	12
547	Catalyst size effects on the growth of single-walled nanotubes in neutral and plasma systems. Nanotechnology, 2009, 20, 375603.	2.6	12
548	Unconventional Ni–P alloy-catalyzed CVD of carbon coil-like micro- and nano-structures. Materials Chemistry and Physics, 2009, 116, 442-448.	4.0	12
549	Hierarchical multilevel arrays of self-assembled gold nanoparticles: Control of resistivity-temperature dependence. Applied Physics Letters, 2010, 97, 163109.	3.3	12
550	Property–Performance Control of Multidimensional, Hierarchical, Singleâ€Crystalline ZnO Nanoarchitectures. ChemPhysChem, 2012, 13, 1535-1541.	2.1	12
551	Plasma-Enabled Carbon Nanostructures for Early Diagnosis of Neurodegenerative Diseases. Materials, 2014, 7, 4896-4929.	2.9	12
552	Quantum Effects of Nonlocal Plasmons in Epsilon-Near-Zero Properties of a Thin Gold Film Slab. Plasmonics, 2015, 10, 1615-1623.	3.4	12
553	Plasma-enabled sensing of urea and related amides on polyaniline. Frontiers of Chemical Science and Engineering, 2016, 10, 265-272.	4.4	12
554	Visible light effects in plasma plume ignition. Physics of Plasmas, 2017, 24, .	1.9	12
555	Carbon nanoflake-nanoparticle interface: A comparative study on structure and photoluminescent properties of carbon nanoflakes synthesized on nanostructured gold and carbon by hot filament CVD. Carbon, 2017, 124, 391-402.	10.3	12
556	Plasma produced photoluminescent molybdenum sub-oxide nanophase materials. Journal of Alloys and Compounds, 2018, 765, 1167-1173.	5 . 5	12
557	The formation mechanism of aqueous hydrogen peroxide in a plasma-liquid system with liquid as the anode. European Physical Journal D, 2020, 74, 1.	1.3	12
558	Controllable synthesis of WS2(1-x)Se2x monolayers with fast photoresponse by a facile chemical vapor deposition strategy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 269, 115176.	3.5	12

#	Article	IF	CITATIONS
559	Controllable Polarization and Doping in Ferroelectric In ₂ Se ₃ Monolayers and Heterobilayers via Intrinsic Defect Engineering. Journal of Physical Chemistry C, 2021, 125, 24648-24654.	3.1	12
560	Title is missing!. Plasmas and Polymers, 2003, 8, 135-152.	1.5	11
561	Nonlinear electromagnetic fields in 0.5 MHz inductively coupled plasmas. Physics of Plasmas, 2003, 10, 1146-1151.	1.9	11
562	Deterministic Surface Growth of Single-Crystalline Iron Oxide Nanostructures in Nonequilibrium Plasma. Crystal Growth and Design, 2008, 8, 4347-4349.	3.0	11
563	Tailoring the composition of self-assembled Si _{$1\hat{a}^{\prime}$<i>x</i>} C _{<i>x</i>} quantum dots: simulation of plasma/ion-related controls. Nanotechnology, 2008, 19, 355705.	2.6	11
564	Mechanical model and superelastic properties of carbon microcoils with circular cross-section. Journal of Applied Physics, 2009, 106, 023520.	2.5	11
565	Customizing electron confinement in plasma-assembled Si/AlN nanodots for solar cell applications. Physics of Plasmas, 2009, 16, 123504.	1.9	11
566	Self-organized quantum dot arrays: Kinetic mapping of adatom capture. Applied Physics Letters, 2009, 95, 243102.	3.3	11
567	Size- and Orientation-Selective Si Nanowire Growth: Thermokinetic Effects of Nanoscale Plasma Chemistry. Journal of the American Chemical Society, 2013, 135, 1912-1918.	13.7	11
568	Nanoherding: Plasma-Chemical Synthesis and Electric-Charge-Driven Self Organization of SiO2 Nanodots. Journal of Physical Chemistry Letters, 2013, 4, 681-686.	4.6	11
569	Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices. Materials, 2015, 8, 4992-5006.	2.9	11
570	Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays. Chinese Physics B, 2016, 25, 045202.	1.4	11
571	Self-organized graphene-like boron nitride containing nanoflakes on copper by low-temperature N2 + H2 plasma. RSC Advances, 2016, 6, 87607-87615.	3.6	11
572	Multifunctional graphene micro-islands: Rapid, low-temperature plasma-enabled synthesis and facile integration for bioengineering and genosensing applications. Biosensors and Bioelectronics, 2017, 89, 437-443.	10.1	11
573	Plasmonic platform based on nanoporous alumina membranes: order control <i>via</i> self-assembly. Journal of Materials Chemistry A, 2019, 7, 9565-9577.	10.3	11
574	Nanomaterials for oncotherapies targeting the hallmarks of cancer. Nanotechnology, 2020, 31, 392001.	2.6	11
575	Rapid synthesis of multifunctional \hat{l}^2 -cyclodextrin nanospheres as alkali-responsive nanocarriers and selective antibiotic adsorbents. Chemical Communications, 2021, 57, 1161-1164.	4.1	11
576	Novel technique using cold atmospheric plasma coupled with air-polishing for the treatment of titanium discs grown with biofilm: An in-vitro study. Dental Materials, 2021, 37, 359-369.	3.5	11

#	Article	IF	CITATIONS
577	Gold–Carbon Nanocomposites for Environmental Contaminant Sensing. Micromachines, 2021, 12, 719.	2.9	11
578	Green ammonia synthesis using CeO ₂ /RuO ₂ nanolayers on vertical graphene catalyst <i>via</i> electrochemical route in alkaline electrolyte. Nanoscale, 2022, 14, 1395-1408.	5 . 6	11
579	Overcoming Ion Transport Barrier by Plasma Heterointerface Engineering: Epitaxial Titanium Carbonitride on Nitrogenâ€Doped TiO ₂ for Highâ€Performance Sodiumâ€ion Batteries. Small, 2022, 18, e2200694.	10.0	11
580	Thermodynamical and plasma-driven kinetic growth of high-aspect-ratio nanostructures: effect of hydrogen termination. Journal Physics D: Applied Physics, 2009, 42, 125207.	2.8	10
581	The path to stoichiometric composition of Ill–V binary quantum dots through plasma/ion-assisted self-assembly. Surface Science, 2009, 603, 359-368.	1.9	10
582	Increased size selectivity of Si quantum dots on SiC at low substrate temperatures: An ion-assisted self-organization approach. Journal of Applied Physics, 2010, 107, 024313.	2.5	10
583	Non-square-well potential profile and suppression of blinking in compositionally graded Cd1â°'xZnxSe/CdxZn1â°'xSe nanocrystals. Nanoscale, 2010, 2, 728.	5. 6	10
584	Control of dense carbon nanotube arrays via hierarchical multilayer catalyst. Applied Physics Letters, 2011, 99, .	3.3	10
585	Partial rectification of the plasmon-induced electrical tunnel current in discontinuous thin gold film at optical frequency. Applied Physics Letters, 2012, 100, .	3.3	10
586	Sonochemical nanoplungers: crystalline gold nanowires by cavitational extrusion through nanoporous alumina. Journal of Materials Chemistry C, 2013, 1, 1727-1731.	5.5	10
587	Biological Application of Carbon Nanotubes and Graphene. , 2014, , 279-312.		10
588	Carbon nanotubes on nanoporous alumina: from surface mats to conformal pore filling. Nanoscale Research Letters, 2014, 9, 390.	5.7	10
589	Protein retention on plasma-treated hierarchical nanoscale gold-silver platform. Scientific Reports, 2015, 5, 13379.	3.3	10
590	Plasmonic †top-hat†nano-star arrays by electron beam lithography. Microelectronic Engineering, 2015, 139, 13-18.	2.4	10
591	Effect of Atmospheric-Pressure Plasmas on Drug Resistant Melanoma: The Challenges of Translating In vitro Outcomes into Animal Models. Plasma Medicine, 2016, 6, 67-83.	0.6	10
592	TiN deposition and morphology control by scalable plasma-assisted surface treatments. Materials Chemistry and Physics, 2017, 188, 143-153.	4.0	10
593	Control of radial propagation and polarity in a plasma jet in surrounding Ar. Physics of Plasmas, 2018, 25, .	1.9	10
594	Microfluidic dielectrophoretic cell manipulation towards stable cell contact assemblies. Biomedical Microdevices, 2018, 20, 95.	2.8	10

#	Article	IF	CITATIONS
595	Angular distribution of carbon ion flux in a nanotube array during the plasma process by the Monte Carlo technique. Physics of Plasmas, 2007, 14, 113504.	1.9	9
596	Effective control of ion fluxes over large areas by magnetic fields: From narrow beams to highly uniform fluxes. Physics of Plasmas, 2009, 16, 053505.	1.9	9
597	High-yield atmospheric-pressure CVD of highly-uniform carbon nanocoils using Co–P catalyst nanoparticles prepared by electroless plating. Journal of Alloys and Compounds, 2009, 484, 860-863.	5.5	9
598	Plasma-aided hydrogenation and Al-doping: Increasing the conductivity and optical transparency of ZnO transparent conducting oxide. Applied Surface Science, 2011, 257, 9986-9990.	6.1	9
599	Free-standing alumina nanobottles and nanotubes pre-integrated into nanoporous alumina membranes. Science and Technology of Advanced Materials, 2014, 15, 045004.	6.1	9
600	Plasma–surface interactions at nanoscales: a combinatorial theoretical, process diagnostics and surface microanalysis approach. Journal Physics D: Applied Physics, 2014, 47, 224009.	2.8	9
601	Plasma treatment for next-generation nanobiointerfaces. Biointerphases, 2015, 10, 029405.	1.6	9
602	Synthesis of high-quality mesoporous silicon particles for enhanced lithium storage performance. Materials Chemistry and Physics, 2016, 173, 89-94.	4.0	9
603	Plasma-deposited hydrogenated amorphous silicon films: multiscale modelling reveals key processes. RSC Advances, 2017, 7, 19189-19196.	3.6	9
604	Electron energy probability function in the temporal afterglow of a dusty plasma. Physics of Plasmas, 2018, 25, .	1.9	9
605	Cytoprotective effects of atmospheric-pressure plasmas against hypoxia-induced neuronal injuries. Journal Physics D: Applied Physics, 2018, 51, 085401.	2.8	9
606	Plasma-nano-interface in perspective: from plasma-for-nano to nano-plasmas. Plasma Physics and Controlled Fusion, 2019, 61, 014028.	2.1	9
607	Plasma-enabled liquid ethanol conversion for hydrogen production: discharge characteristics and process control. Journal Physics D: Applied Physics, 2020, 53, 174001.	2.8	9
608	Innovative Precision Geneâ€Editing Tools in Personalized Cancer Medicine. Advanced Science, 2020, 7, 1902552.	11.2	9
609	Exploring Aluminum″on Insertion into Magnesiumâ€Doped Manjiroite (MnO ₂) Nanorods in Aqueous Solution. ChemElectroChem, 2021, 8, 1048-1054.	3.4	9
610	Rejection of harsh pH saline solutions using graphene membranes. Carbon, 2021, 171, 240-247.	10.3	9
611	Size-selected Ni catalyst islands for single-walled carbon nanotube arrays. Journal of Nanoparticle Research, 2008, 10, 249-254.	1.9	8
612	Electron/ion energy loss to discharge walls revised: A case study in low-temperature, thermally nonequilibrium plasmas. Physics of Plasmas, 2008, 15, 023502.	1.9	8

#	Article	IF	Citations
613	Visible photoluminescence from plasma-synthesized SiO2-buffered SiNx films: Effect of film thickness and annealing temperature. Journal of Applied Physics, 2008, 103, 053512.	2.5	8
614	Plasma-Assembled Carbon Nanotubes: Electric Field–Related Effects. Journal of Nanoscience and Nanotechnology, 2008, 8, 6112-6122.	0.9	8
615	Electron-Conduction Mechanism and Specific Heat AboveÂTransition Temperature in LaFeAsO and BaFe2As2 Superconductors. Journal of Superconductivity and Novel Magnetism, 2009, 22, 785-789.	1.8	8
616	Electron transport across magnetic field in low-temperature plasmas: An alternative approach for obtaining evidence of Bohm mechanism. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1140-1143.	2.1	8
617	Discharge parameters and dominant electron conductivity mechanism in a low-pressure planar magnetron discharge. Physics of Plasmas, 2009, 16, .	1.9	8
618	Made-to-order nanocarbons through deterministic plasma nanotechnology. Nanoscale, 2011, 3, 731-740.	5.6	8
619	Vertical Graphene Nanosheets Coated with Gold Nanoparticle Arrays: Effect of Interparticle Spacing on Optical Response. Journal of Nanomaterials, 2015, 2015, 1-7.	2.7	8
620	Note: Rapid reduction of graphene oxide paper by glow discharge plasma. Review of Scientific Instruments, 2015, 86, 056101.	1.3	8
621	Multiscale Plasma atalytic Onâ€6urface Assembly. Small, 2020, 16, 1903184.	10.0	8
622	Controllable synthesis of SnS ₂ flakes and MoS ₂ /SnS ₂ heterostructures by confined-space chemical vapor deposition. CrystEngComm, 2021, 23, 2563-2571.	2.6	8
623	Development of a battery-operated floating-electrode dielectric barrier discharge plasma device and its characteristics. Plasma Science and Technology, 2021, 23, 064008.	1.5	8
624	Single-step synthesis of TiO2/WO3â° hybrid nanomaterials in ethanoic acid: Structure and photoluminescence properties. Applied Surface Science, 2021, 562, 150180.	6.1	8
625	Recent advances towards aqueous hydrogen peroxide formation in a direct current plasma–liquid system. High Voltage, 2022, 7, 405-419.	4.7	8
626	Microfluidic Plasma-Based Continuous and Tunable Synthesis of Ag–Au Nanoparticles and Their SERS Properties. Industrial & Chemistry Research, 2022, 61, 2183-2194.	3.7	8
627	Cold atmospheric plasma for preventing infection of viruses that use ACE2 for entry. Theranostics, 2022, 12, 2811-2832.	10.0	8
628	Discharge mode transitions in low-frequency inductively coupled plasmas with internal oscillating current sheets. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 440-447.	2.1	7
629	Two-surface wave decay: Controlling power transfer in plasma-surface interactions. Physics of Plasmas, 2007, 14, 082106.	1.9	7
630	Analysis of photoluminescence background of Raman spectra of carbon nanotips grown by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2009, 106, 013315.	2.5	7

#	Article	IF	CITATIONS
631	Aluminum-assisted crystallization and p-type doping ofÂpolycrystalline Si. Applied Physics A: Materials Science and Processing, 2009, 97, 375-380.	2.3	7
632	Disentangling fluxes of energy and matter in plasma-surface interactions: Effect of process parameters. Journal of Applied Physics, 2010, 108, 053302.	2.5	7
633	Simulation of Carbon Arc Discharge for the Synthesis of Nanotubes. IEEE Transactions on Plasma Science, 2011, 39, 2876-2877.	1.3	7
634	Structure- and composition-dependent electron field emission from nitrogenated carbon nanotips. Journal of Applied Physics, 2012, 112, 084304.	2.5	7
635	Plasma control of morpho-dimensional selectivity of hematite nanostructures. Applied Physics Letters, 2012, 100, 243103.	3.3	7
636	Lanthanum oxide nanostructured films synthesized using hot dense and extremely non-equilibrium plasma for nanoelectronic device applications. Journal of Materials Science, 2014, 49, 1594-1605.	3.7	7
637	Effective Control of the Arc Discharge-Generated Plasma Jet by Smartly Designed Magnetic Fields. IEEE Transactions on Plasma Science, 2014, 42, 2464-2465.	1.3	7
638	Effects of hydrogen on the structural and optical properties of MoSe2 grown by hot filament chemical vapor deposition. Journal of Crystal Growth, 2017, 475, 1-9.	1.5	7
639	Quantum plasmonics: longitudinal quantum plasmons in copper, gold, and silver. Journal of Optics (United Kingdom), 2017, 19, 105402.	2.2	7
640	Ambient air synthesis of multi-layer CVD graphene films for low-cost, efficient counter electrode material in dye-sensitized solar cells. FlatChem, 2018, 8, 1-8.	5.6	7
641	Radial constraints and the polarity mechanism of plasma plume. Physics of Plasmas, 2018, 25, .	1.9	7
642	Controlling the adsorption behavior of hydrogen at the interface of polycrystalline CVD graphene. International Journal of Hydrogen Energy, 2018, 43, 18735-18744.	7.1	7
643	Manganese Oxide Derived from a Spent Zn–C Battery as a Catalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2020, 7, 2073-2080.	3.4	7
644	Cold atmospheric plasma coupled with air abrasion in liquid medium for the treatment of peri-implantitis model grown with a complex human biofilm: an in vitro study. Clinical Oral Investigations, 2021, 25, 6633-6642.	3.0	7
645	Upcycle hazard against other hazard: Toxic fluorides from plasma fluoropolymer etching turn novel microbial disinfectants. Journal of Hazardous Materials, 2022, 424, 127658.	12.4	7
646	Ultra-small gold nanoclusters assembled on plasma polymer-modified zeolites: a multifunctional nanohybrid with anti-haemorrhagic and anti-inflammatory properties. Nanoscale, 2021, 13, 19936-19945.	5.6	7
647	Plasma-electrolytic liquefaction of human waste for biofuels production and recovery of ammonium, chlorine and metals. Chemical Engineering Journal, 2022, 433, 134581.	12.7	7
648	Two Steps Back, One Leap Forward: Synergistic Energy Conversion in Plasmonic and Plasma Catalysis. ACS Energy Letters, 2022, 7, 300-309.	17.4	7

#	Article	IF	CITATIONS
649	Heterostructured Palladium–Nickel Sulfide on Plasma-Activated Nickel Foil for Robust Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2022, 10, 8064-8074.	6.7	7
650	CONTROL AND DIAGNOSTICS OF INDUCTIVELY COUPLED PLASMAS FOR CHEMICAL VAPOUR DEPOSITION ON NANOCOMPOSITE CARBON NITRIDE-BASED FILMS. International Journal of Modern Physics B, 2002, 16, 1143-1147.	2.0	6
651	Simulation of Gas-Phase Nanoparticle Dynamics in the Plasma-Enhanced Chemical Vapor Deposition of Carbon Nanostructures. Physica Scripta, 2004, 70, 322-325.	2.5	6
652	Nanopowder Management and Plasma Parameters in Nanofabrication of Low-Dimensional Quantum Structures in Reactive Silane-Based Plasmas. Physica Scripta, 2005, 72, 277-280.	2.5	6
653	Reactive species in Ar+H ₂ plasma-aided nanofabrication: two-dimensional discharge modelling. Physica Scripta, 2007, 76, 187-195.	2.5	6
654	Inductively coupled plasma-assisted RF magnetron sputtering deposition of boron-doped microcrystalline Si films. Journal of Alloys and Compounds, 2010, 499, 166-170.	5. 5	6
655	Surface insulation performance of epoxy resin/silica nanocomposite material., 2011,,.		6
656	Atmospheric-Pressure Discharges for the Fabrication of Surface-Based Metal Nanostructures. IEEE Transactions on Plasma Science, 2011, 39, 2814-2815.	1.3	6
657	Sustainable Nanoscience for a Sustainable Future. IEEE Transactions on Plasma Science, 2013, 41, 716-724.	1.3	6
658	Dense Plasmas in Magnetic Traps: Generation of Focused Ion Beams With Controlled Ion-to-Neutral Flux Ratios. IEEE Transactions on Plasma Science, 2014, 42, 2518-2519.	1.3	6
659	Effect of multi-modal environmental stress on dose-dependent cytotoxicity of nanodiamonds in Saccharomyces cerevisiae cells. Sustainable Materials and Technologies, 2019, 22, e00123.	3.3	6
660	Solar Energy Conversion: Multifunctional Solar Waterways: Plasmaâ€Enabled Selfâ€Cleaning Nanoarchitectures for Energyâ€Efficient Desalination (Adv. Energy Mater. 30/2019). Advanced Energy Materials, 2019, 9, 1970119.	19.5	6
661	Dielectrophoretic deformation of breast cancer cells for lab on a chip applications. Electrophoresis, 2019, 40, 2728-2735.	2.4	6
662	Size and electron density of open-air plasmas diagnosed by optical imaging. Journal Physics D: Applied Physics, 2019, 52, 265203.	2.8	6
663	Temperature dependence of pattern transitions on water surface in contact with DC microplasmas. Plasma Science and Technology, 2020, 22, 055404.	1.5	6
664	Atmospheric pressure plasma treatments protect neural cells from ischemic strokeâ€relevant injuries by targeting mitochondria. Plasma Processes and Polymers, 2020, 17, 2000063.	3.0	6
665	lon Dynamics of Waterâ€inâ€Salt Electrolyte with Organic Solvents in Nanoporous Supercapacitor Electrodes. ChemElectroChem, 2020, 7, 2048-2054.	3.4	6
666	The Production Efficiency of Reactive Oxygen and Nitrogen Species (RONS) of AC and Pulse-DC Plasma Jet. IEEE Transactions on Plasma Science, 2020, 48, 4204-4214.	1.3	6

#	Article	IF	Citations
667	Effect of duty cycle on pulsed discharge atmospheric pressure plasma: discharge volume and remnant electron density. Plasma Sources Science and Technology, 2020, 29, 085017.	3.1	6
668	Energy absorbancy and freezing-temperature tunability of NaCl solutions during ice formation. Journal of Molecular Liquids, 2021, 344, 117928.	4.9	6
669	Entropy generation analysis in supercapacitor modules based on a three-dimensional coupled thermal model. Energy, 2022, 244, 123218.	8.8	6
670	Aligned Ti3C2TX Aerogel with High Rate Performance, Power Density and Sub-Zero-Temperature Stability. Energies, 2022, 15, 1191.	3.1	6
671	Antimicrobial adhesive films by plasma-enabled polymerisation of m-cresol. Scientific Reports, 2022, 12, 7560.	3.3	6
672	Re-carbon, up-carbon, de-carbon: Plasma-electrified roll-to-roll cleaner production of vertical graphenes and syngas from greenhouse gas mixes. Carbon, 2022, 197, 301-310.	10.3	6
673	A hemicellulose-first approach: one-step conversion of sugarcane bagasse to xylooligosaccharides over activated carbon modified with tandem plasma and acid treatments. Green Chemistry, 2022, 24, 7410-7428.	9.0	6
674	Numerical simulation of nanoparticle-generating electronegative plasmas in the PECVD of nanostructured silicon film. Computational Materials Science, 2004, 30, 303-307.	3.0	5
675	Effect of ambipolar fluxes on nanoparticle charging in low-pressure glow discharges. Physical Review E, 2005, 71, 026405.	2.1	5
676	Suppression of current fluctuations in a crossed E \tilde{A} —B field system for low-voltage plasma immersion treatment. Journal of Applied Physics, 2006, 99, 013301.	2.5	5
677	Investigation on Bioactivity of Titanium Dioxide Thin Films Fabricated by Electron Cyclotron Resonance Plasma Aided Pulsed Laser Deposition. Plasma Science and Technology, 2009, 11, 477-480.	1.5	5
678	Single-step, catalyst-free plasma-assisted synthesis and growth mechanism of single-crystalline aluminum nitride nanorods. Applied Physics Letters, 2010, 97, 213103.	3.3	5
679	Graphene and Carbon Nanotubes From Arc Plasmas: Experiment and Plasma Modeling. IEEE Transactions on Plasma Science, 2011, 39, 2798-2799.	1.3	5
680	Nanoscale control of energy and matter in plasmaâ€"surface interactions: Toward energy- and matter-efficient nanotech. Physics of Plasmas, 2011, 18, 057101.	1.9	5
681	STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF Al -DOPED ZnO TRANSPARENT CONDUCTING OXIDE FOR SOLAR CELL APPLICATIONS. Functional Materials Letters, 2011, 04, 401-405.	1.2	5
682	Copper-Capped Carbon Nanocones on Silicon: Plasma-Enabled Growth Control. ACS Applied Materials & Camp; Interfaces, 2012, 4, 6021-6029.	8.0	5
683	Thermal effect of plasmon oscillations on the tunnel current in gold nanoisland thin film at low laser intensity. Applied Physics Letters, 2013, 102, 111115.	3.3	5
684	Physisorption-induced electron scattering on the surface of carbon-metal core-shell nanowire arrays for hydrogen sensing. Applied Physics Letters, 2013, 102, .	3.3	5

#	Article	IF	Citations
685	Large Arrays and Networks of Carbon Nanotubes: Morphology Control by Process Parameters. , 0, , .		5
686	Long, Vertically Aligned Single-Walled Carbon Nanotubes from Plasmas: Morpho-Kinetic and Alignment Controls. Plasma Processes and Polymers, 2014, 11, 798-808.	3.0	5
687	Electronic, optical and thermal properties of TiCr2 and TiMn2 by ab initio simulations. International Journal of Modern Physics B, 2015, 29, 1550223.	2.0	5
688	Atmospheric Plasma Jet-Enhanced Anodization and Nanoparticle Synthesis. IEEE Transactions on Plasma Science, 2015, 43, 765-769.	1.3	5
689	Scalable Production of Silicon Nanocone Solar Cells in Integrated Plasma Photovoltaic Nanofabrication Cluster. Plasma Processes and Polymers, 2016, 13, 161-169.	3.0	5
690	Pillar BNCO nanoflake/nanorod hybrid networks synthesized by plasma-enhanced hot filament CVD: Structure and photoluminescence. Carbon, 2017, 118, 615-624.	10.3	5
691	Effect of background ionization on plasma ignition dynamics. Physics of Plasmas, 2017, 24, 033503.	1.9	5
692	Ethanol-controlled peroxidation in liquid-anode discharges. Journal Physics D: Applied Physics, 2019, 52, 425205.	2.8	5
693	Cytoprotective effect of atmospheric pressure helium plasma on oxygen and glucose deprivation-induced cell death in H9C2 cardiac myoblasts and primary neonatal rat cardiomyocytes. Journal Physics D: Applied Physics, 2019, 52, 135401.	2.8	5
694	Versatile, Rapid, and Plasmaâ€Assisted Synthesis of Cuprous Halide Composites at Room Temperature and Pressure. Advanced Materials Technologies, 0, , 2100509.	5.8	5
695	Towards single electron transistor-based photon detection with microplasma-enabled graphene quantum dots. Nanotechnology, 2021, 32, 50LT01.	2.6	5
696	Bidirectional doping of two-dimensional thin-layer transition metal dichalcogenides using soft ammonia plasma. Nanoscale, 2021, 13, 15278-15284.	5.6	5
697	Effects of tungsten doping on structure and photoluminescence of MoO3–x nanomaterials. Journal Physics D: Applied Physics, 2020, 53, 415109.	2.8	5
698	Enhancing Mechanical Energy Transfer of Piezoelectric Supercapacitors. Advanced Materials Technologies, 2022, 7, 2100550.	5.8	5
699	Status and prospects of Ohmic contacts on two-dimensional semiconductors. Nanotechnology, 2022, 33, 062005.	2.6	5
700	Sustainable Claisen-Schmidt chalcone synthesis catalysed by plasma-recovered MgO nanosheets from seawater. Sustainable Materials and Technologies, 2022, 32, e00394.	3.3	5
701	Plasma-catalytic CO2 hydrogenation to ethane in a dielectric barrier discharge reactor. Journal of CO2 Utilization, 2022, 57, 101882.	6.8	5
702	Arc and pulsed spark discharge inactivation of pathogenic P. aeruginosa, S. aureus, M. canis, T. mentagrophytes, and C. albicans microorganisms. Environmental Science and Pollution Research, 2022, 29, 56442-56453.	5.3	5

#	Article	IF	Citations
703	Magnetic fields and uniformity of radio frequency power deposition in low-frequency inductively coupled plasmas with crossed internal oscillating currents. Physics of Plasmas, 2004, 11, 3915-3924.	1.9	4
704	Low-Temperature Growth of Large Area, Vertically Aligned Carbon Nanotubes for Field Emission Applications. Journal of Metastable and Nanocrystalline Materials, 2005, 23, 297-300.	0.1	4
705	Generation of uniform plasmas by crossed internal oscillating current sheets: Key concepts and experimental verification. Journal of Applied Physics, 2005, 97, 013301.	2.5	4
706	Dust charge and ion drag forces in a high-voltage, capacitive radio frequency sheath. Physics of Plasmas, 2009, 16, 113707.	1.9	4
707	SYNTHESIS, MECHANICAL AND ELECTRICAL PROPERTIES OF CARBON MICROCOILS AND NANOCOILS. Functional Materials Letters, 2010, 03, 263-267.	1.2	4
708	Nanoscale Transfer of Energy and Matter in Plasma–Surface Interactions. IEEE Transactions on Plasma Science, 2011, 39, 963-970.	1.3	4
709	Different Nanostructures From Different Plasmas: Nanoflowers and Nanotrees on Silicon. IEEE Transactions on Plasma Science, 2011, 39, 2796-2797.	1.3	4
710	Reinforced insulation properties of epoxy resin/SiO < sub> $2 < sub>$ nanocomposites by atmospheric pressure plasma modification., 2012, , .		4
711	Current Control in the Magnetron Systems for Nanofabrication: A Comparison. IEEE Transactions on Plasma Science, 2012, 40, 1094-1097.	1.3	4
712	lon impact distribution over plasma exposed nanocone arrays. Physics of Plasmas, 2013, 20, .	1.9	4
713	Characteristics of Epoxy Resin/SiO ₂ Nanocomposite Insulation: Effects of Plasma Surface Treatment on the Nanoparticles. Journal of Nanoscience and Nanotechnology, 2013, 13, 3371-3376.	0.9	4
714	Imaging of the Asymmetric DC Discharge: Visualization to Adjust Plasma in the Novel PECVD Reactor. IEEE Transactions on Plasma Science, 2014, 42, 2564-2565.	1.3	4
715	Hydrogen Evolution: Perpendicularly Oriented MoSe ₂ /Graphene Nanosheets as Advanced Electrocatalysts for Hydrogen Evolution (Small 4/2015). Small, 2015, 11, 508-508.	10.0	4
716	Chemically active plasmas for surface passivation of Si photovoltaics. Catalysis Today, 2015, 252, 201-210.	4.4	4
717	Thin Nanoporous Metal–Insulator–Metal Membranes. ACS Applied Materials & Interfaces, 2016, 8, 4292-4297.	8.0	4
718	Effects of plasma and gas flow conditions on the structures and photoluminescence of carbon nanomaterials. Diamond and Related Materials, 2018, 84, 178-189.	3.9	4
719	Morphological transformations of BNCO nanomaterials: Role of intermediates. Applied Surface Science, 2018, 442, 682-692.	6.1	4
720	Reversible Intercalation of Multivalent Al 3+ Ions into Potassiumâ€Rich Cryptomelane Nanowires for Aqueous Rechargeable Alâ€lon Batteries. ChemSusChem, 2019, 12, 3670-3670.	6.8	4

#	Article	IF	CITATIONS
721	Oriented Graphenes from Plasma-Reformed Coconut Oil for Supercapacitor Electrodes. Nanomaterials, 2019, 9, 1679.	4.1	4
722	One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR. Nanoscale, 2021, 13, 13882-13895.	5.6	4
723	Colorimetric quantification of aqueous hydrogen peroxide in the DC plasma-liquid system. Plasma Science and Technology, 2021, 23, 055504.	1.5	4
724	Band Alignment with Selfâ€Assembled 2D Layer of Carbon Derived from Waste to Balance Charge Injection in Perovskite Crystals Based Rigid and Flexible Light Emitting Diodes. Advanced Materials Technologies, 2022, 7, 2100583.	5.8	4
725	The Ag ⁺ Reduction Process in a Plasma Electrochemical System Tuned by the pH Value. Journal of the Electrochemical Society, 2021, 168, 123508.	2.9	4
726	Surface-induced gas-phase redistribution effects in plasma-catalytic dry reforming of methane: numerical investigation by fluid modeling. Journal Physics D: Applied Physics, 2022, 55, 355201.	2.8	4
727	Carbene Ligands Enabled C–N Coupling for Methylamine Electrosynthesis: A Computational Study. Energy & Computational Study. Energy & Computational Study.	5.1	4
728	Interaction of transverse electromagnetic waves with counterpropagating surface waves at a plasma-dielectric interface. Physica Scripta, 2007, 76, 461-465.	2.5	3
729	A quantification of the interaction and spatial ordering in nano-arrays. Applied Surface Science, 2009, 255, 7477-7482.	6.1	3
730	Demonstration of nonlinear absorption in Au semi-continuous film by electrical measurement. Optics Express, 2011, 19, 17167.	3.4	3
731	The effect of microscopic texture on the direct plasma surface passivation of Si solar cells. Physics of Plasmas, 2013, 20, 043502.	1.9	3
732	Simulation of Au particle interaction on graphene sheets. Proceedings of SPIE, 2013, , .	0.8	3
733	Supercapacitors: Structureâ€Controlled, Vertical Grapheneâ€Based, Binderâ€Free Electrodes from Plasmaâ€Reformed Butter Enhance Supercapacitor Performance (Adv. Energy Mater. 10/2013). Advanced Energy Materials, 2013, 3, 1250-1250.	19.5	3
734	Silicon quantum dots embedded in amorphous SiC matrix for third-generation solar cells: Microstructure control by RF discharge power. Functional Materials Letters, 2015, 08, 1550054.	1.2	3
735	Impact of Silicon Nanocrystal Oxidation on the Nonmetallic Growth of Carbon Nanotubes. ACS Applied Materials & Diterfaces, 2016, 8, 19012-19023.	8.0	3
736	Catalyst-free growth and tailoring morphology of zinc oxide nanostructures by plasma-enhanced deposition at low temperature. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	3
737	Robust Fabrication of Quantum Dots on Fewâ€Layer MoS ₂ by Soft Hydrogen Plasma and Postâ€Annealing. Particle and Particle Systems Characterization, 2018, 35, 1800060.	2.3	3
738	From nanoparticles to nanofilms: exploring effects of Zn addition for nanostructure modification and photoluminescence intensification of MoO _{3â^²<i>x</i>} nanomaterials. Journal Physics D: Applied Physics, 2020, 53, 095101.	2.8	3

#	Article	IF	Citations
739	Water Splitting: In Situ Formation of Oxygen Vacancies Achieving Nearâ€Complete Charge Separation in Planar BiVO⟨sub⟩4⟨ sub⟩ Photoanodes (Adv. Mater. 26 2020). Advanced Materials, 2020, 32, 2070198.	21.0	3
740	Visualization of gold nanoparticles formation in DC plasma-liquid systems. Plasma Science and Technology, 2021, 23, 075504.	1.5	3
741	Mechanisms of atmospheric pressure plasma protection of neuronal cells under simulated ischemic stroke conditions. AIP Advances, 2022, 12, .	1.3	3
742	Tailoring of ion species composition in complex plasmas with charge exchange collisions. Physics of Plasmas, 2005, 12, 062105.	1.9	2
743	Numerical simulation of self-organized nano-islands in plasma-based assembly of quantum dot arrays. , 2005, , .		2
744	Inductively Coupled Plasma-Assisted RF Magnetron Sputtering Deposition of Highly Uniform SiC Nanoislanded Films. IEEE Transactions on Plasma Science, 2008, 36, 870-871.	1.3	2
745	Multi-scale hybrid numerical simulation of the growth of high-aspect-ratio nanostructures. Computational Materials Science, 2008, 44, 9-15.	3.0	2
746	Nonresonant power transfer in plasma-surface interactions via two-surface wave decay. Physics of Plasmas, 2008, 15, 012113.	1.9	2
747	Effect of input power and gas pressure on the roughening and selective etching of SiO2/Si surfaces in reactive plasmas. Physics of Plasmas, 2010, 17, 094501.	1.9	2
748	Composition-Dependent Structural and Electronic Properties of \hat{l} ±-(Si1â^'xCx)3N4. Journal of Physical Chemistry C, 2011, 115, 2448-2453.	3.1	2
749	Minimizing the Gibbs–Thomson effect in the low-temperature plasma synthesis of thin Si nanowires. Nanotechnology, 2011, 22, 315707.	2.6	2
750	Steady state genuine multipartite entanglement in harmonic oscillator ensembles with a common environment. European Physical Journal D, 2013, 67, 1.	1.3	2
751	Metal-insulator-metal capacitors based on lanthanum oxide high- \hat{l}^{o} dielectric nanolayers fabricated using dense plasma focus device. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 03D107.	1.2	2
752	The role of tunnel junction resistances and defects on electron transport mechanism in networks of two-dimensional disordered conductors. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 64, 87-94.	2.7	2
753	Hybrid Carbon-Based Nanostructured Platforms for the Advanced Bioreactors. Journal of Nanoscience and Nanotechnology, 2015, 15, 10074-10090.	0.9	2
754	Ultra-Low Reflective Silicon Surfaces for Photovoltaic Applications. Procedia Engineering, 2016, 139, 147-154.	1.2	2
755	Vinylene and benzo[<i>c</i>][1,2,5]thiadiazole: effect of the π-spacer unit on the properties of bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing polymers for n-channel organic field-effect transistors. RSC Advances, 2018, 8, 38919-38928.	3.6	2
756	Nanocarbon phase transformations controlled by solubility of carbon species in gold nanoparticles. Diamond and Related Materials, 2018, 88, 282-289.	3.9	2

#	Article	IF	Citations
757	Relativistic air-plasma far-infrared radiation effects by ultrashort laser pulses in air. High Energy Density Physics, 2019, 33, 100708.	1.5	2
758	Ultrathin HfAlO ferroelectrics enhancing electron transport and perovskite solar cell performance. Journal of Materials Research, 2021, 36, 1855-1865.	2.6	2
7 59	Lung Cancer Oncotherapy through Novel Modalities: Gas Plasma and Nanoparticle Technologies. , 0, , .		2
760	Mechanistic Insight in Surface Nanotopography Driven Cellular Migration. ACS Biomaterials Science and Engineering, 2021, 7, 4921-4932.	5.2	2
761	High performance IGZO-based phototransistors by BN/BP interface engineering. Nanotechnology, 2021, 32, 025201.	2.6	2
762	Plasma sprayed thermal barrier coatings: Effects of polyamide additive on injection molding part quality. Journal of Applied Polymer Science, 2022, 139, 51980.	2.6	2
763	Reduced breakdown voltage for in-liquid plasma discharges using moveable electrodes. Journal Physics D: Applied Physics, 2022, 55, 10LT01.	2.8	2
764	When Onco-Immunotherapy Meets Cold Atmospheric Plasma: Implications on CAR-T Therapies. Frontiers in Oncology, 2022, 12, 837995.	2.8	2
765	Nonlinear Interactions of the Surface Waves Propagating at the Plasmaâ€like Mediumâ€Metal Interface. Contributions To Plasma Physics, 1995, 35, 481-489.	1.1	1
766	Low temperature growth of vertically aligned carbon nanofibres in a low frequency inductively coupled plasma reactor. , 0 , , .		1
767	Ion-acoustic waves in a complex plasma with negative ions. , 0, , .		1
768	Nanofabrication of single-crystalline flat-panel display microemitters: a plasma-building unit approach., 2005,,.		1
769	Internal oscillating current-sustained RF plasmas: Parameters, stability, and potential for surface engineering. Surface and Coatings Technology, 2005, 200, 796-799.	4.8	1
770	Modelling electronegative complex plasma systems. AIP Conference Proceedings, 2005, , .	0.4	1
771	SIMULATION OF ION FLUX DISTRIBUTION IN CONDUCTIVE AND NONCONDUCTIVE NANOTIP PATTERNS. International Journal of Nanoscience, 2006, 05, 621-626.	0.7	1
772	ELECTROSTATIC NANOPARTICLE FILTER FOR ATOMIC SCALE FABRICATION IN LOW-TEMPERATURE PLASMAS. International Journal of Nanoscience, 2006, 05, 465-469.	0.7	1
773	Hydrocarbon Plasma for Treatment of Biodegradable Food Containers. IEEE Transactions on Plasma Science, 2008, 36, 1306-1307.	1.3	1
774	Distribution of Ion-Current Density on Substrate Between Carbon Nanotubes Grown From Low-Temperature Plasma. IEEE Transactions on Plasma Science, 2008, 36, 864-865.	1.3	1

#	Article	IF	CITATIONS
775	How thick SiO2 cap layer is needed to achieve strong visible photoluminescence from SiO2-buffered SiNx films?. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2016-2020.	2.7	1
776	Controlling electronic and adiabatic isolation of quantum dots from the substrate: An ionization-energy theoretic study. Physica B: Condensed Matter, 2010, 405, 2263-2271.	2.7	1
777	Control of density of self-organized carbon nanotube arrays by catalyst pretreatment through plasma immersion ion implantation. Journal of Applied Physics, 2011, 110, 094303.	2.5	1
778	Electric Breakdown in Liquids: Faster Ignition Using Less Energy. Plasma Processes and Polymers, 2013, 10, 422-429.	3.0	1
779	Dielectric performance of nanocomposites synthesized by poly(ethylene oxide)-like film coated silica nanoparticles by plasma polymerization., 2013,,.		1
780	Controlled Growth of Singleâ€Walled Carbon Nanotube Networks by Catalyst Interfacial Diffusion. Advanced Materials Interfaces, 2014, 1, 1300151.	3.7	1
781	Sensors: Plasmonic Metamaterial Sensor with Ultraâ€High Sensitivity in the Visible Spectral Range (Advanced Optical Materials 6/2015). Advanced Optical Materials, 2015, 3, 716-716.	7.3	1
782	Quantum plasmonics for next-generation optical and sensing technologies. Proceedings of SPIE, 2015, ,	0.8	1
783	Hierarchical, Verticallyâ€Oriented Carbon Nanowall Foam Supercapacitor Using Room Temperature Ionic Liquid Mixture for AC Line Filtering with Ultrahigh Energy Density. ChemElectroChem, 2019, 6, 2123-2123.	3.4	1
784	Chemo-Radiative Stress of Plasma as a Modulator of Charge-Dependent Nanodiamond Cytotoxicity. ACS Applied Bio Materials, 2020, 3, 7202-7210.	4.6	1
785	Atmospheric microplasma based binary Pt ₃ Co nanoflowers synthesis. Journal Physics D: Applied Physics, 2020, 53, 225201.	2.8	1
786	Space charge effects on radiative ultrashort laserâ€plasma interactions: Relativistic fluid model. Contributions To Plasma Physics, 2021, 61, e202100003.	1.1	1
787	Non-local Quantum Plasmon Resonance in Ultra-small Silver Nanoparticles. Plasmonics, 2021, 16, 1261-1267.	3.4	1
788	Hybrid participation options to mitigate discrimination and maximise productivity in post-COVID higher education and research workplaces. Physical and Engineering Sciences in Medicine, 2021, 44, 339-339.	2.4	1
789	Single and dual-gate organic field-effect transistors based on diketopyrrolopyrrole-diethienothiophene polymers: performance modulation via dielectric interfaces. Materials Research Express, 2021, 8, 096301.	1.6	1
790	2D MoS 2 Heterostructures on Epitaxial and Selfâ€Standing Graphene for Energy Storage: From Growth Mechanism to Application. Advanced Materials Technologies, 0, , 2100963.	5.8	1
791	Plasma Enabled Fabrication of Silicon Carbide Nanostructures. Springer Series in Materials Science, 2013, , 161-178.	0.6	1
792	Enhanced photoresponsivity of InSe photodetector by molecular doping. Applied Physics Express, 2020, 13, 111005.	2.4	1

#	Article	IF	CITATIONS
7 93	Lithography-free and high-efficiency preparation of black phosphorous devices by direct evaporation through shadow mask. Nanotechnology, 2022, 33, 225201.	2.6	1
794	Energy exchange modulation for selective control of gas temperature and electron number density in cold atmospheric plasmas. Plasma Sources Science and Technology, 0, , .	3.1	1
795	Self-Organization and Dynamics of Nanoparticles in Chemically Active Plasmas for Low-Temperature Deposition of Silicon and Carbon-Based Nanostructured Films. ChemInform, 2004, 35, no.	0.0	0
796	Nanoparticle manipulation in plasma-assisted nanofabrication of electron field emitters based on single crystalline carbon nanotip patterns., 2005, 6037, 390.		0
797	Back Cover: Plasma Process. Polym. 5/2005. Plasma Processes and Polymers, 2005, 2, 444-444.	3.0	0
798	Plasma nanoscience: from nature's mastery to deterministic plasma-aided nanofabrication., 2006,,.		0
799	Carbon-Based Nanostructures. , 0, , 121-158.		0
800	Generation of Highly Uniform, High-Density Inductively Coupled Plasma., 0,, 41-83.		0
801	Plasma Sources: Meeting the Demands of Nanotechnology. , 0, , 85-120.		0
802	Quantum Confinement Structures. , 0, , 159-207.		0
803	Other Examples of Plasma-Aided Nanofabrication. , 0, , 237-268.		0
804	Further Examples, Conclusions, and Outlook. , 0, , 269-281.		0
805	Hydroxyapatite Bioceramics., 0,, 209-236.		0
806	Simulation and Visualization of Self-Assembled Nanodevice Networks Synthesized via Plasma–Surface Interaction. IEEE Transactions on Plasma Science, 2008, 36, 866-867.	1.3	0
807	Effect of plasma particles on synthesis of vertically-alligned carbon nanofibers in plasma-enhanced chemical vapor deposition. , 2008, , .		0
808	GENERATION AND APPLICATION OF HIGH DENSITY LOW-FREQUENCY INDUCTIVELY COUPLED PLASMAS. , 2008, , .		0
809	Effect of Plasma Environment on Synthesis of Vertically Aligned Carbon Nanofibers in Plasma-Enhanced Chemical Vapor Deposition. Nanoscience and Technology, 2009, , 103-110.	1.5	0
810	Plasma Process. Polym. 5/2011. Plasma Processes and Polymers, 2011, 8, .	3.0	0

#	Article	IF	Citations
811	Plasma functionalization of SiO <inf>2</inf> nanoparticles for the synthesis of polymer nano-dielectrics. , 2012, , .		0
812	Optical properties of silver nanowires grown electrochemically in nanoporous alumina. , 2012, , .		0
813	Plasma-Enabled Graded Nanotube Biosensing Arrays on a Si Nanodevice Platform: Catalyst-Free Integration and In Situ Detection of Nucleation Events (Adv. Mater. 1/2013). Advanced Materials, 2013, 25, 68-68.	21.0	0
814	Coupling of a quantum emitter to the surface plasmons of a nanowire. , 2014, , .		0
815	Back Cover: Plasma Process. Polym. 8â•2014. Plasma Processes and Polymers, 2014, 11, 810-810.	3.0	0
816	Carbon Nanotubes: Controlled Growth of Single-Walled Carbon Nanotube Networks by Catalyst Interfacial Diffusion (Adv. Mater. Interfaces 4/2014). Advanced Materials Interfaces, 2014, 1, n/a-n/a.	3.7	0
817	Energy-Efficient Growth: Multifunctional Three-Dimensional T-Junction Graphene Micro-Wells: Energy-Efficient, Plasma-Enabled Growth and Instant Water-Based Transfer for Flexible Device Applications (Adv. Funct. Mater. 39/2014). Advanced Functional Materials, 2014, 24, 6113-6113.	14.9	0
818	Back Cover: Plasma Process. Polym. 1â [•] 2015. Plasma Processes and Polymers, 2015, 12, 92-92.	3.0	0
819	Quantum plasmon resonance in small metallic nanoparticles. , 2016, , .		0
820	Modeling Catalytic Growth of One-Dimensional Nanostructures. , 2017, , 291-308.		0
821	Electrocatalysts: Mulberryâ€Inspired Nickelâ€Niobium Phosphide on Plasmaâ€Defectâ€Engineered Carbon Support for Highâ€Performance Hydrogen Evolution (Small 43/2020). Small, 2020, 16, 2070236.	10.0	0
822	Liquid discharge plasma for fast biomass liquefaction at mild conditions: The effects of homogeneous catalysts. Frontiers of Chemical Science and Engineering, 2020, 14, 763-771.	4.4	0
823	Plasma Nanoscience: Multiscale Plasmaâ€Catalytic Onâ€Surface Assembly (Small 12/2020). Small, 2020, 16, 2070065.	10.0	0
824	Exploring Aluminumâ€lon Insertion into Magnesiumâ€Doped Manjiroite (MnO 2) Nanorods in Aqueous Solution. ChemElectroChem, 2021, 8, 995-995.	3.4	0
825	PLASMA NANOSCIENCE: FROM ASTRONUCLEOSYNTHESIS TO ORIGIN OF LIFE AND INDUSTRIAL NANOMANUFACTURING. , 2008, , .		0
826	Plasma-Enhanced Chemical Vapor Deposition of Graphene Nanostructures., 2012,,.		0
827	Three-dimensional Plasmonic Fields of Gold Nanostar Arrays: Beyond the Near-field. Current Nanoscience, 2016, 12, 592-597.	1.2	0
828	Composite Sound-Absorbing Materials Using Electrospun PS Fibrous Membranes and Needle-Punched PET Non-Woven Fabrics. Journal of Fiber Science and Technology, 2022, 78, 18-27.	0.4	0

#	ARTICLE	IF	CITATIONS
829	Mechanisms of Selective Non-Thermal Plasma Effects Towards Cancer and Normal Cells. , 2020, , .		0
830	Where Physics Meets (BIO-)Chemistry: Reactive Plasmas for Sustainable Processing and Activation. , 2020, , .		0
831	Versatile, Rapid, and Plasmaâ€Assisted Synthesis of Cuprous Halide Composites at Room Temperature and Pressure (Adv. Mater. Technol. 4/2022). Advanced Materials Technologies, 2022, 7, .	5.8	0
832	Inhalation of Atmospheric-Pressure Gas Plasma Attenuates Brain Infarction in Rats With Experimental Ischemic Stroke. Frontiers in Neuroscience, 2022, 16, 875053.	2.8	0
833	Enhancing Mechanical Energy Transfer of Piezoelectric Supercapacitors (Adv. Mater. Technol. 4/2022). Advanced Materials Technologies, 2022, 7, .	5.8	0