
Serge Luquet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1757913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis. Molecular Psychiatry, 2022, 27, 2340-2354.	7.9	22
2	<i>Soat2</i> ties cholesterol metabolism to βâ€oxidation and glucose tolerance in male mice. Journal of Internal Medicine, 2022, 292, 296-307.	6.0	6
3	Translational profiling of mouse dopaminoceptive neurons reveals region-specific gene expression, exon usage, and striatal prostaglandin E2 modulatory effects. Molecular Psychiatry, 2022, 27, 2068-2079.	7.9	12
4	Dopamine drives food craving during pregnancy. Nature Metabolism, 2022, 4, 410-411.	11.9	2
5	Hindbrain catecholaminergic inputs to the paraventricular thalamus scale feeding and metabolic efficiency in stressâ€related contexts. Journal of Physiology, 2022, 600, 2877-2895.	2.9	3
6	Tanycytes control hypothalamic liraglutide uptake and its anti-obesity actions. Cell Metabolism, 2022, 34, 1054-1063.e7.	16.2	28
7	Metabolic actions of the growth hormone-insulin growth factor-1 axis and its interaction with the central nervous system. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 919-930.	5.7	5
8	Further Evidence that Habitual Consumption of Sucralose with, but Not without, Carbohydrate Alters Glucose Metabolism. Cell Metabolism, 2021, 33, 227-228.	16.2	1
9	Sonic Hedgehog receptor Patched deficiency in astrocytes enhances glucose metabolism in mice. Molecular Metabolism, 2021, 47, 101172.	6.5	8
10	The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Molecular Metabolism, 2021, 48, 101206.	6.5	114
11	Dietary lipids as regulators of reward processes: multimodal integration matters. Trends in Endocrinology and Metabolism, 2021, 32, 693-705.	7.1	17
12	Ghrelin treatment induces rapid and delayed increments of food intake: a heuristic model to explain ghrelin's orexigenic effects. Cellular and Molecular Life Sciences, 2021, 78, 6689-6708.	5.4	10
13	Cardiolipin content controls mitochondrial coupling and energetic efficiency in muscle. Science Advances, 2021, 7, .	10.3	23
14	Lkb1 suppresses amino acid-driven gluconeogenesis in the liver. Nature Communications, 2020, 11, 6127.	12.8	21
15	A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice. EBioMedicine, 2020, 58, 102895.	6.1	8
16	Intestinal NAPE-PLD contributes to short-term regulation of food intake via gut-to-brain axis. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E647-E657.	3.5	14
17	Hypothalamic Regulation of Glucose Homeostasis: Is the Answer in the Matrix?. Cell Metabolism, 2020, 32, 701-703.	16.2	1
18	Hepatic NAPE-PLD Is a Key Regulator of Liver Lipid Metabolism. Cells, 2020, 9, 1247.	4.1	17

#	Article	IF	CITATIONS
19	Mapping astrocyte activity domains by light sheet imaging and spatio-temporal correlation screening. NeuroImage, 2020, 220, 117069.	4.2	14
20	Short-Term Consumption of Sucralose with, but Not without, Carbohydrate Impairs Neural and Metabolic Sensitivity to Sugar in Humans. Cell Metabolism, 2020, 31, 493-502.e7.	16.2	79
21	Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. Journal of Clinical Investigation, 2020, 130, 6093-6108.	8.2	17
22	Dlx5 and Dlx6 expression in GABAergic neurons controls behavior, metabolism, healthy aging and lifespan. Aging, 2019, 11, 6638-6656.	3.1	25
23	MCH Regulates SIRT1/FoxO1 and Reduces POMC Neuronal Activity to Induce Hyperphagia, Adiposity, and Glucose Intolerance. Diabetes, 2019, 68, 2210-2222.	0.6	34
24	Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nature Communications, 2019, 10, 457.	12.8	100
25	A readout of metabolic efficiency in arylamine <i>N</i> â€acetyltransferaseâ€deficient mice reveals minor energy metabolism changes. FEBS Letters, 2019, 593, 831-841.	2.8	3
26	Adipocyte Glucocorticoid Receptor Deficiency Promotes Adipose Tissue Expandability and Improves the Metabolic Profile Under Corticosterone Exposure. Diabetes, 2019, 68, 305-317.	0.6	35
27	Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nature Neuroscience, 2019, 22, 7-14.	14.8	200
28	Overexpression of the DYRK1A Gene (Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A) Induces Alterations of the Serotoninergic and Dopaminergic Processing in Murine Brain Tissues. Molecular Neurobiology, 2018, 55, 3822-3831.	4.0	17
29	AgRP Neurons Require Carnitine Acetyltransferase to Regulate Metabolic Flexibility and Peripheral Nutrient Partitioning. Cell Reports, 2018, 22, 1745-1759.	6.4	30
30	Endocannabinoid and nitric oxide systems of the hypothalamic paraventricular nucleus mediate effects of NPY on energy expenditure. Molecular Metabolism, 2018, 18, 120-133.	6.5	17
31	Carnitine acetyltransferase (Crat) in hungerâ€sensing AgRP neurons permits adaptation to calorie restriction. FASEB Journal, 2018, 32, 6923-6933.	0.5	16
32	Lipoprotein Lipase Expression in Hypothalamus Is Involved in the Central Regulation of Thermogenesis and the Response to Cold Exposure. Frontiers in Endocrinology, 2018, 9, 103.	3.5	6
33	Lipoprotein lipase in hypothalamus is a key regulator of body weight gain and glucose homeostasis in mice. Diabetologia, 2017, 60, 1314-1324.	6.3	23
34	DRD2: Bridging the Genome and Ingestive Behavior. Trends in Cognitive Sciences, 2017, 21, 372-384.	7.8	40
35	Disruption of Lipid Uptake in Astroglia Exacerbates Diet-Induced Obesity. Diabetes, 2017, 66, 2555-2563.	0.6	59
36	The LXCXE Retinoblastoma Protein-Binding Motif of FOG-2 Regulates Adipogenesis. Cell Reports, 2017, 21, 3524-3535.	6.4	4

#	Article	IF	CITATIONS
37	Odor-Induced Neuronal Rhythms in the Olfactory Bulb Are Profoundly Modified in ob/ob Obese Mice. Frontiers in Physiology, 2017, 8, 2.	2.8	18
38	Central CCL2 signaling onto MCH neurons mediates metabolic and behavioral adaptation to inflammation. EMBO Reports, 2016, 17, 1738-1752.	4.5	40
39	Muscle expression of a malonyl-CoA-insensitive carnitine palmitoyltransferase-1 protects mice against high-fat/high-sucrose diet-induced insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E649-E660.	3.5	8
40	α-Melanocyte stimulating hormone promotes muscle glucose uptake via melanocortin 5 receptors. Molecular Metabolism, 2016, 5, 807-822.	6.5	39
41	Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability. Cell, 2016, 166, 867-880.	28.9	382
42	Dietary triglycerides as signaling molecules that influence reward and motivation. Current Opinion in Behavioral Sciences, 2016, 9, 126-135.	3.9	12
43	NOV/CCN3: A New Adipocytokine Involved in Obesity-Associated Insulin Resistance. Diabetes, 2016, 65, 2502-2515.	0.6	48
44	Lipidomics profile of a NAPE-PLD KO mouse provides evidence of a broader role of this enzyme in lipid metabolism in the brain. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 491-500.	2.4	91
45	Triglyceride sensing in the reward circuitry: A new insight in feeding behaviour regulation. Biochimie, 2016, 120, 75-80.	2.6	16
46	Mesolimbic lipid sensing and the regulation of feeding behaviour. OCL - Oilseeds and Fats, Crops and Lipids, 2015, 22, D407.	1.4	0
47	Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nature Communications, 2015, 6, 6495.	12.8	144
48	Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nature Medicine, 2015, 21, 610-618.	30.7	149
49	Brain lipid sensing and the neural control of energy balance. Molecular and Cellular Endocrinology, 2015, 418, 3-8.	3.2	68
50	Palatability Can Drive Feeding Independent of AgRP Neurons. Cell Metabolism, 2015, 22, 646-657.	16.2	122
51	Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nature Communications, 2014, 5, 5648.	12.8	197
52	Oxytocin Reverses Ovariectomy-Induced Osteopenia and Body Fat Gain. Endocrinology, 2014, 155, 1340-1352.	2.8	55
53	Hippocampal lipoprotein lipase regulates energy balance in rodents. Molecular Metabolism, 2014, 3, 167-176.	6.5	47
54	Myostatin is a key mediator between energy metabolism and endurance capacity of skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R444-R454.	1.8	65

#	Article	IF	CITATIONS
55	Intestinal deletion of leptin signaling alters activity of nutrient transporters and delayed the onset of obesity in mice. FASEB Journal, 2014, 28, 4100-4110.	0.5	29
56	The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28, 725-737.	4.7	100
57	Hypothalamic Tanycytes: Gatekeepers to Metabolic Control. Cell Metabolism, 2014, 19, 173-175.	16.2	30
58	Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine. Frontiers in Behavioral Neuroscience, 2014, 8, 35.	2.0	26
59	Hypothalamic regulation of energy balance: a key role for DICER miRNA processing in arcuate POMC neurons. Molecular Metabolism, 2013, 2, 55-57.	6.5	6
60	Tanycytic VEGF-A Boosts Blood-Hypothalamus Barrier Plasticity and Access of Metabolic Signals to the Arcuate Nucleus in Response to Fasting. Cell Metabolism, 2013, 17, 607-617.	16.2	285
61	High-Density Lipoprotein Maintains Skeletal Muscle Function by Modulating Cellular Respiration in Mice. Circulation, 2013, 128, 2364-2371.	1.6	73
62	Central lipid detection and the regulation of feeding behavior. Oleagineux Corps Gras Lipides, 2013, 20, 93-101.	0.2	0
63	Arcuate AgRP neurons and the regulation of energy balance. Frontiers in Endocrinology, 2012, 3, 169.	3.5	59
64	The multiple roles of fatty acid handling proteins in brain. Frontiers in Physiology, 2012, 3, 385.	2.8	47
65	Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning. EMBO Journal, 2012, 31, 4276-4288.	7.8	105
66	Laforin, a dual specificity phosphatase involved in Lafora disease, regulates insulin response and whole-body energy balance in mice. Human Molecular Genetics, 2011, 20, 2571-2584.	2.9	16
67	Role of Hypothalamic Melanocortin System in Adaptation of Food Intake to Food Protein Increase in Mice. PLoS ONE, 2011, 6, e19107.	2.5	24
68	Lipid-Induced Peroxidation in the Intestine Is Involved in Glucose Homeostasis Imbalance in Mice. PLoS ONE, 2011, 6, e21184.	2.5	9
69	The Nutritional Induction of COUP-TFII Gene Expression in Ventromedial Hypothalamic Neurons Is Mediated by the Melanocortin Pathway. PLoS ONE, 2010, 5, e13464.	2.5	8
70	A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. Journal of Lipid Research, 2010, 51, 2352-2361.	4.2	156
71	Exploring Functional β-Cell Heterogeneity In Vivo Using PSA-NCAM as a Specific Marker. PLoS ONE, 2009, 4, e5555.	2.5	39
72	GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice. Journal of Clinical Investigation, 2009, 119, 1201-1215.	8.2	605

#	Article	IF	CITATIONS
73	Short-term adaptation of postprandial lipoprotein secretion and intestinal gene expression to a high-fat diet. American Journal of Physiology - Renal Physiology, 2009, 296, G782-G792.	3.4	49
74	The central nervous system at the core of the regulation of energy homeostasis. Frontiers in Bioscience - Scholar, 2009, S1, 448-465.	2.1	51
75	Régulation de la prise alimentaire. Nutrition Clinique Et Metabolisme, 2008, 22, 52-58.	0.5	3
76	Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology, 2008, 54, 1-7.	4.1	253
77	NPY/AgRP neurons are not essential for feeding responses to glucoprivation. Peptides, 2007, 28, 214-225.	2.4	126
78	Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration. Cell Metabolism, 2006, 4, 349-362.	16.2	519
79	Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8858-8863.	7.1	196
80	Norepinephrine―and Epinephrineâ€deficient Mice Gain Weight Normally on a Highâ€fat Diet. Obesity, 2005, 13, 1518-1522.	4.0	13
81	Modulation of neuropeptide Y expression in adult mice does not affect feeding. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18632-18637.	7.1	60
82	Germ cells and fatty acids induce translocation of CD36 scavenger receptor to the plasma membrane of Sertoli cells. Journal of Cell Science, 2005, 118, 3027-3035.	2.0	45
83	Roles of PPAR delta in lipid absorption and metabolism: a new target for the treatment of type 2 diabetes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1740, 313-317.	3.8	164
84	NPY/AgRP Neurons Are Essential for Feeding in Adult Mice but Can Be Ablated in Neonates. Science, 2005, 310, 683-685.	12.6	968
85	Roles of peroxisome proliferator-activated receptor delta (PPARδ) in the control of fatty acid catabolism. A new target for the treatment of metabolic syndrome. Biochimie, 2004, 86, 833-837.	2.6	85
86	Roles of peroxisome proliferator-activated receptors delta and gamma in myoblast transdifferentiation. Experimental Cell Research, 2003, 288, 168-176.	2.6	55
87	Nutritional regulation and role of peroxisome proliferator-activated receptor δ in fatty acid catabolism in skeletal muscle. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1633, 43-50.	2.4	166
88	Peroxisome proliferatorâ€activated receptor l´ controls muscle development and oxydative capability. FASEB Journal, 2003, 17, 2299-2301.	0.5	481
89	Peroxisome-proliferator-activated receptor δ mediates the effects of long-chain fatty acids on post-confluent cell proliferation. Biochemical Journal, 2000, 350, 93.	3.7	22
90	Peroxisome-proliferator-activated receptor δ mediates the effects of long-chain fatty acids on post-confluent cell proliferation. Biochemical Journal, 2000, 350, 93-98.	3.7	55

#	Article	IF	CITATIONS
91	Alterations of Peroxisome Proliferator-activated Receptor δActivity Affect Fatty Acid-controlled Adipose Differentiation. Journal of Biological Chemistry, 2000, 275, 38768-38773.	3.4	94
92	The Dopamine Receptor Subtype 2 (DRD2) Regulates the Central Reinforcing Actions of Dietary Lipids in Humans and Rodents. SSRN Electronic Journal, 0, , .	0.4	1