Maria Carmen Cenit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1757361/publications.pdf

Version: 2024-02-01

39 papers 5,546 citations

236925 25 h-index 315739 38 g-index

40 all docs

40 docs citations

times ranked

40

10820 citing authors

#	Article	IF	CITATIONS
1	Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science, 2016, 352, 565-569.	12.6	1,398
2	Proton pump inhibitors affect the gut microbiome. Gut, 2016, 65, 740-748.	12.1	885
3	The effect of host genetics on the gut microbiome. Nature Genetics, 2016, 48, 1407-1412.	21.4	672
4	The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids. Circulation Research, 2015, 117, 817-824.	4.5	534
5	Influence of gut microbiota on neuropsychiatric disorders. World Journal of Gastroenterology, 2017, 23, 5486.	3.3	286
6	Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open, 2015, 5, e006772.	1.9	207
7	The influence of a short-term gluten-free diet on the human gut microbiome. Genome Medicine, 2016, 8, 45.	8.2	198
8	Intestinal Microbiota and Celiac Disease: Cause, Consequence or Co-Evolution?. Nutrients, 2015, 7, 6900-6923.	4.1	151
9	Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1981-1992.	3.8	141
10	Association of the STAT4 gene with increased susceptibility for some immuneâ€mediated diseases. Arthritis and Rheumatism, 2008, 58, 2598-2602.	6.7	118
11	The genetics of celiac disease: A comprehensive review of clinical implications. Journal of Autoimmunity, 2015, 64, 26-41.	6.5	117
12	Gut microbiota and attention deficit hyperactivity disorder: new perspectives for a challenging condition. European Child and Adolescent Psychiatry, 2017, 26, 1081-1092.	4.7	108
13	The autoimmune disease-associated KIF5A, CD226 and SH2B3 gene variants confer susceptibility for multiple sclerosis. Genes and Immunity, 2010, 11, 439-445.	4.1	79
14	IL23R: a susceptibility locus for celiac disease and multiple sclerosis?. Genes and Immunity, 2008, 9, 289-293.	4.1	57
15	Chromosomal region 16p13: further evidence of increased predisposition to immune diseases. Annals of the Rheumatic Diseases, 2010, 69, 309-311.	0.9	57
16	IFIH1-GCA-KCNH7 locus: influence on multiple sclerosis risk. European Journal of Human Genetics, 2008, 16, 861-864.	2.8	55
17	STAT3 locus in inflammatory bowel disease and multiple sclerosis susceptibility. Genes and Immunity, 2010, 11, 264-268.	4.1	54
18	New insight on the Xq28 association with systemic sclerosis. Annals of the Rheumatic Diseases, 2013, 72, 2032-2038.	0.9	52

#	Article	IF	CITATIONS
19	Validation of IRF5 as multiple sclerosis risk gene: putative role in interferon beta therapy and human herpes virus-6 infection. Genes and Immunity, 2011, 12, 40-45.	4.1	36
20	Replication of top markers of a genome-wide association study in multiple sclerosis in Spain. Genes and Immunity, 2011, 12, 110-115.	4.1	36
21	Influence of the <i>IL6</i> Gene in Susceptibility to Systemic Sclerosis. Journal of Rheumatology, 2012, 39, 2294-2302.	2.0	34
22	A <scp>GWAS</scp> metaâ€analysis from 5 populationâ€based cohorts implicates ion channel genes in the pathogenesis of irritable bowel syndrome. Neurogastroenterology and Motility, 2018, 30, e13358.	3.0	34
23	HLA class I and II alleles and response to treatment with interferon-beta in relapsing–remitting multiple sclerosis. Journal of Neuroimmunology, 2009, 210, 116-119.	2.3	33
24	Influence of the STAT3 genetic variants in the susceptibility to psoriatic arthritis and Behcet's disease. Human Immunology, 2013, 74, 230-233.	2.4	30
25	Validation of the CD6 and TNFRSF1A loci as risk factors for multiple sclerosis in Spain. Journal of Neuroimmunology, 2010, 223, 100-103.	2.3	29
26	Gut Microbiota and Risk of Developing Celiac Disease. Journal of Clinical Gastroenterology, 2016, 50, S148-S152.	2.2	22
27	Effect of BSN-MST1 locus on inflammatory bowel disease and multiple sclerosis susceptibility. Genes and Immunity, 2009, 10, 631-635.	4.1	19
28	HLA alleles as biomarkers of high-titre neutralising antibodies to interferon- \hat{l}^2 therapy in multiple sclerosis. Journal of Medical Genetics, 2014, 51, 395-400.	3.2	19
29	Herpesvirus active replication in multiple sclerosis. Journal of the Neurological Sciences, 2011, 311, 98-102.	0.6	15
30	Analysis of Ancestral and Functionally Relevant CD5 Variants in Systemic Lupus Erythematosus Patients. PLoS ONE, 2014, 9, e113090.	2.5	15
31	Evaluation of the IL2/IL21, IL2RA and IL2RB genetic variants influence on the endogenous non-anterior uveitis genetic predisposition. BMC Medical Genetics, 2013, 14, 52.	2.1	12
32	DRB1*03:01 Haplotypes: Differential Contribution to Multiple Sclerosis Risk and Specific Association with the Presence of Intrathecal IgM Bands. PLoS ONE, 2012, 7, e31018.	2.5	11
33	Towards Tailored Gut Microbiome-Based and Dietary Interventions for Promoting the Development and Maintenance of a Healthy Brain. Frontiers in Pediatrics, 2021, 9, 705859.	1.9	7
34	Lack of association between the protein tyrosine phosphatase non-receptor type 22 R263Q and R620W functional genetic variants and endogenous non-anterior uveitis. Molecular Vision, 2013, 19, 638-43.	1.1	7
35	MSH5 is not a genetic predisposing factor for immunoglobulin A deficiency but marks the HLA-DRB1*0102 subgroup carrying susceptibility. Human Immunology, 2010, 71, 861-864.	2.4	6
36	No evidence of association between functional polymorphisms located within <scp><i>IL6R</i></scp> and <scp><i>IL6ST</i></scp> genes and systemic sclerosis. Tissue Antigens, 2012, 80, 254-258.	1.0	4

#	Article	IF	CITATIONS
37	No Evidence of Association between Common Autoimmunity STAT4 and IL23R Risk Polymorphisms and Non-Anterior Uveitis. PLoS ONE, 2013, 8, e72892.	2.5	4
38	Two Functional Variants of IRF5 Influence the Development of Macular Edema in Patients with Non-Anterior Uveitis. PLoS ONE, 2013, 8, e76777.	2.5	3
39	Corrigendum to "HLA class I and II alleles and response to treatment with interferon-beta in relapsing–remitting multiple sclerosis―[J. Neuroimmunol. 210(2009)116–119]. Journal of Neuroimmunology, 2009, 214, 132.	2.3	0