
Kalika Prasad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1757034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Species-specific function of conserved regulators in orchestrating rice root architecture. Development (Cambridge), 2022, , .	2.5	10
2	Age, Wound Size and Position of Injury – Dependent Vascular Regeneration Assay in Growing Leaves. Bio-protocol, 2021, 11, e4010.	0.4	1
3	Model systems for regeneration: <i>Arabidopsis</i> . Development (Cambridge), 2021, 148, .	2.5	20
4	Regulation of touch-stimulated de novo root regeneration from Arabidopsis leaves. Plant Physiology, 2021, 187, 52-58.	4.8	6
5	A coherent feed forward loop drives vascular regeneration in damaged aerial organs growing in normal developmental-context. Development (Cambridge), 2020, 147, .	2.5	24
6	Regrowing the damaged or lost body parts. Current Opinion in Plant Biology, 2020, 53, 117-127.	7.1	9
7	Genome-Wide Transcript Profiling Reveals an Auxin-Responsive Transcription Factor, OsAP2/ERF-40, Promoting Rice Adventitious Root Development. Plant and Cell Physiology, 2019, 60, 2343-2355.	3.1	21
8	Gradient Expression of Transcription Factor Imposes a Boundary on Organ Regeneration Potential in Plants. Cell Reports, 2019, 29, 453-463.e3.	6.4	33
9	Intermediate Developmental Phases During Regeneration. Plant and Cell Physiology, 2018, 59, 707-712.	3.1	3
10	The WOX11–LBD16 Pathway Promotes Pluripotency Acquisition in Callus Cells During De Novo Shoot Regeneration in Tissue Culture. Plant and Cell Physiology, 2018, 59, 739-748.	3.1	99
11	Shoot regeneration: a journey from acquisition of competence to completion. Current Opinion in Plant Biology, 2018, 41, 23-31.	7.1	61
12	Fungal Production and Manipulation of Plant Hormones. Current Medicinal Chemistry, 2018, 25, 253-267.	2.4	21
13	Insights into the art of recreation. Developmental Biology, 2018, 442, 1-2.	2.0	Ο
14	PtWOX11 acts as master regulator conducting the expression of key transcription factors to induce de novo shoot organogenesis in poplar. Plant Molecular Biology, 2018, 98, 389-406.	3.9	21
15	The PLETHORA Gene Regulatory Network Guides Growth and Cell Differentiation in Arabidopsis Roots. Plant Cell, 2016, 28, 2937-2951.	6.6	127
16	De novo assembly of plant body plan: a step ahead of Deadpool. Regeneration (Oxford, England), 2016, 3, 182-197.	6.3	55
17	Protocol: a method to study the direct reprogramming of lateral root primordia to fertile shoots. Plant Methods, 2016, 12, 27.	4.3	22
18	MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for Plants. Plant Physiology, 2016, 170, 627-641.	4.8	119

Kalika Prasad

#	Article	IF	CITATIONS
19	PLETHORA Genes Control Regeneration by a Two-Step Mechanism. Current Biology, 2015, 25, 1017-1030.	3.9	240
20	Competence and regulatory interactions during regeneration in plants. Frontiers in Plant Science, 2014, 5, 142.	3.6	72
21	PLETHORA gradient formation mechanism separates auxin responses. Nature, 2014, 515, 125-129.	27.8	329
22	A mathematical basis for plant patterning derived from physicoâ€chemical phenomena. BioEssays, 2013, 35, 366-376.	2.5	2
23	Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1107-1112.	7.1	146
24	Phyllotaxis and Rhizotaxis in Arabidopsis Are Modified by Three PLETHORA Transcription Factors. Current Biology, 2013, 23, 956-962.	3.9	105
25	Polar Auxin Transport: Cell Polarity to Patterning. Signaling and Communication in Plants, 2013, , 25-44.	0.7	10
26	Arabidopsis PLETHORA Transcription Factors Control Phyllotaxis. Current Biology, 2011, 21, 1123-1128.	3.9	124
27	The Arabidopsis B-sister MADS-box protein, GORDITA, represses fruit growth and contributes to integument development. Plant Journal, 2010, 62, 203-214.	5.7	62
28	Shaping up the fruit. Plant Signaling and Behavior, 2010, 5, 899-902.	2.4	15
29	Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development (Cambridge), 2010, 137, 3245-3255.	2.5	201
30	Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature, 2008, 456, 962-966.	27.8	228
31	Distinct regulatory role for <i>RFL</i> , the rice <i>LFY</i> homolog, in determining flowering time and plant architecture. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3646-3651.	7.1	198
32	The making of a bushy grass with a branched flowering stem. Plant Signaling and Behavior, 2008, 3, 981-983.	2.4	1
33	Divergent Regulatory OsMADS2 Functions Control Size, Shape and Differentiation of the Highly Derived Rice Floret Second-Whorl Organ. Genetics, 2007, 176, 283-294.	2.9	72
34	OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant Journal, 2005, 43, 915-928.	5.7	178
35	Mechanism underlying regulated expression of RFL, a conserved transcription factor, in the developing rice inflorescence. Mechanisms of Development, 2003, 120, 491-502.	1.7	28
36	Double-Stranded RNA Interference of a Rice <i>PI</i> / <i>GLO</i> Paralog, <i>OsMADS2</i> , Uncovers Its Second-Whorl-Specific Function in Floral Organ Patterning. Genetics, 2003, 165, 2301-2305.	2.9	83

Kalika Prasad

#	Article	IF	CITATIONS
37	Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Development Genes and Evolution, 2001, 211, 281-290.	0.9	140
38	A conserved function for Arabidopsis SUPERMAN in regulating floral-whorl cell proliferation in rice, a monocotyledonous plant. Current Biology, 2000, 10, 215-218.	3.9	51
39	Gradient Expression of Transcription Factor Imposes a Boundary on Organ Regenerative Potential in Plant. SSRN Electronic Journal, O, , .	0.4	1
40	A Functionally Conserved Regulatory Module Confers Universal Regeneration Potential to Plant Tissues in Response to Injury. SSRN Electronic Journal, 0, , .	0.4	0