Mehtap Sahiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1757007/publications.pdf Version: 2024-02-01

MEHTAD SAHINED

#	Article	IF	CITATIONS
1	Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties. International Journal of Biological Macromolecules, 2016, 82, 150-159.	7.5	129
2	Synthesis, characterization and modification of Gum Arabic microgels for hemocompatibility and antimicrobial studies. Carbohydrate Polymers, 2017, 156, 380-389.	10.2	71
3	Nitrogen and Sulfur Doped Carbon Dots from Amino Acids for Potential Biomedical Applications. Journal of Fluorescence, 2019, 29, 1191-1200.	2.5	65
4	Polyethyleneimine modified poly(Hyaluronic acid) particles with controllable antimicrobial and anticancer effects. Carbohydrate Polymers, 2017, 159, 29-38.	10.2	53
5	The use of superporous p(3-acrylamidopropyl)trimethyl ammonium chloride cryogels for removal of toxic arsenate anions. Journal of Environmental Management, 2015, 152, 66-74.	7.8	48
6	Degradable tannic acid/polyethyleneimine polyplex particles with highly antioxidant and antimicrobial effects. Polymer Degradation and Stability, 2016, 133, 152-161.	5.8	47
7	Collagen-based hydrogel films as drug-delivery devices with antimicrobial properties. Polymer Bulletin, 2014, 71, 3017-3033.	3.3	43
8	Polydopamine particles as nontoxic, blood compatible, antioxidant and drug delivery materials. Colloids and Surfaces B: Biointerfaces, 2018, 172, 618-626.	5.0	36
9	P(TA) macro-, micro-, nanoparticle-embedded super porous p(HEMA) cryogels as wound dressing material. Materials Science and Engineering C, 2017, 70, 317-326.	7.3	35
10	Removal of As(V), Cr(III) and Cr(VI) from aqueous environments by poly(acrylonitril-co-acrylamidopropyl-trimethyl ammonium chloride)-based hydrogels. Journal of Environmental Management, 2015, 161, 243-251.	7.8	34
11	Versatile Fluorescent Carbon Dots from Citric Acid and Cysteine with Antimicrobial, Anti-biofilm, Antioxidant, and AChE Enzyme Inhibition Capabilities. Journal of Fluorescence, 2021, 31, 1705-1717.	2.5	33
12	Superporous hyaluronic acid cryogel composites embedding synthetic polyethyleneimine microgels and Halloysite Nanotubes as natural clay. European Polymer Journal, 2017, 93, 775-784.	5.4	30
13	Fast removal of high quantities of toxic arsenate via cationic p(APTMACl) microgels. Journal of Environmental Management, 2016, 166, 217-226.	7.8	28
14	Nitrogen-Doped Arginine Carbon Dots and Its Metal Nanoparticle Composites as Antibacterial Agent. Journal of Carbon Research, 2020, 6, 58.	2.7	27
15	Macroporous cryogel metal nanoparticle composites for H2 generation from NaBH4 hydrolysis in seawater. Applied Surface Science, 2015, 354, 388-396.	6.1	26
16	Responsive biopolymer-based microgels/nanogels for drug delivery applications. , 2018, , 453-500.		26
17	The synthesis of desired functional groups on PEI microgel particles for biomedical and environmental applications. Applied Surface Science, 2015, 354, 380-387.	6.1	24
18	Halloysite-carboxymethyl cellulose cryogel composite from natural sources. Applied Clay Science, 2017, 140, 66-74.	5.2	23

MEHTAP SAHINER

#	Article	IF	CITATIONS
19	Fabrication of Biodegradable Poly(naringin) Particles with Antioxidant Activity and Low Toxicity. ACS Omega, 2018, 3, 17359-17367.	3.5	22
20	Ionic liquid hydrogel templates: Bulkgel, cryogel, and microgel to be used for metal nanoparticle preparation and catalysis. European Polymer Journal, 2015, 70, 66-78.	5.4	21
21	Enhancement of biocompatibility and carbohydrate absorption control potential of rosmarinic acid through crosslinking into microparticles. International Journal of Biological Macromolecules, 2019, 137, 836-843.	7.5	21
22	Rod-like l-Aspartic acid-Cu(II) metal organic frameworks; Synthesis, characterization and biomedical properties. Current Research in Green and Sustainable Chemistry, 2021, 4, 100110.	5.6	18
23	Functionalization of halloysite nanotubes with polyethyleneimine and various ionic liquid forms with antimicrobial activity. Journal of Applied Polymer Science, 2020, 137, 48352.	2.6	17
24	Removal of arsenate and dichromate ions from different aqueous media by amine based p(TAEA-co-GDE) microgels. Journal of Environmental Management, 2017, 197, 631-641.	7.8	16
25	Synthesis and characterization of new microgel from tris(2-aminoethyl)amine and glycerol diglycidyl ether as poly(TAEA-co-GDE). Colloids and Surfaces B: Biointerfaces, 2015, 136, 1156-1165.	5.0	13
26	Degradable poly(catechin) nanoparticles as a versatile therapeutic agent. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1104-1115.	3.4	13
27	Poly(vinyl alcohol)-tannic Acid Cryogel Matrix as Antioxidant and Antibacterial Material. Polymers, 2022, 14, 70.	4.5	13
28	Chemically Cross-Linked Poly(β-Cyclodextrin) Particles as Promising Drug Delivery Materials. ACS Applied Polymer Materials, 2021, 3, 6238-6251.	4.4	12
29	Application of superporous magnetic cationic cryogels for persistent chromate (toxic chromate and) Tj ETQq1 1	0.784314 2.6	rgBT /Over
30	Improved Biomedical Properties of Polydopamine-Coated Carbon Nanotubes. Micromachines, 2021, 12, 1280.	2.9	11
31	Hyaluronic acid (HA)-Gd(III) and HA-Fe(III) microgels as MRI contrast enhancing agents. Carbohydrate Polymers, 2022, 277, 118873.	10.2	11
32	p(AAm/TA)â€based IPN hydrogel films with antimicrobial and antioxidant properties for biomedical applications. Journal of Applied Polymer Science, 2015, 132, .	2.6	10
33	Agar/Chitosan IPN Thin Hydrogel Films with Antimicrobial and Antioxidant Properties for Potential Dressing Applications. Current Applied Polymer Science, 2017, 1, 52-62.	0.2	9
34	Enhanced enzymatic activity and stability by in situ entrapment of α-Glucosidase within super porous p(HEMA) cryogels during synthesis. Biotechnology Reports (Amsterdam, Netherlands), 2020, 28, e00534.	4.4	9
35	Degradable Natural Phenolic Based Particles with Micro- and Nano-size Range. Recent Patents on Materials Science, 2018, 11, 33-40.	0.5	7
36	Chondroitin Sulfate-Based Cryogels for Biomedical Applications. Gels, 2021, 7, 127.	4.5	7

MEHTAP SAHINER

#	Article	IF	CITATIONS
37	Quantitative Clinical Diagnostic Analysis of Acetone in Human Blood by HPLC: A Metabolomic Search for Acetone as Indicator. Journal of Analytical Methods in Chemistry, 2016, 2016, 1-7.	1.6	6
38	Preparation of collagen based composite materials with synthetic polymers for potential wound dressing applications. Hacettepe Journal of Biology and Chemistry, 2014, 1, 63-63.	0.9	5
39	Milk hydrogels as nutrient media and survival rate enhancer under cryogenic conditions for different microorganisms. Polymer Bulletin, 2016, 73, 3351-3370.	3.3	4
40	Synthesis, Characterization, and Use of Carbon Microspheres for Removal of Different Dyes from Aqueous Environments. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	4
41	Poly(Vinylamine) Derived N-Doped C-Dots with Antimicrobial and Antibiofilm Activities. Journal of Carbon Research, 2021, 7, 40.	2.7	3
42	Hydrolytic nondegradable bioactive rosmarinic acid particles. Polymers for Advanced Technologies, 0,	3.2	2
43	Poli(Rutin) micro/nanogels for biomedical applications. Hittite Journal of Science & Engineering, 2021, 8, 179-187.	0.5	1
44	Colloidal bioactive nanospheres prepared from natural biomolecules, catechin and L-lysine. Journal of Polymer Research, 2022, 29, 1.	2.4	1
45	Quercetin particles with lower inhibitory activity for $\hat{I}\pm$ -glycosidase and negligible effects on blood clotting. Journal of the Turkish Chemical Society. Section A: Chemistry, 0, , 443-452.	1.1	0