Jun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1755572/publications.pdf

Version: 2024-02-01

100	31,082 citations	13827	99 • •
papers	citations	h-index	g-index
101 all docs	101 docs citations	101 times ranked	21132 citing authors

#	Article	IF	CITATIONS
1	Electrochemical Energy Storage for Green Grid. Chemical Reviews, 2011, 111, 3577-3613.	23.0	4,276
2	Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy, 2016, $1, \dots$	19.8	2,186
3	Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4, 180-186.	19.8	2,101
4	Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Journal of the American Chemical Society, 2013, 135, 4450-4456.	6.6	1,736
5	Complex and oriented ZnO nanostructures. Nature Materials, 2003, 2, 821-826.	13.3	1,404
6	Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature Communications, 2014, 5, 4105.	5 . 8	1,160
7	Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018, 3, 739-746.	19.8	767
8	Highâ€Voltage Lithiumâ€Metal Batteries Enabled by Localized Highâ€Concentration Electrolytes. Advanced Materials, 2018, 30, e1706102.	11.1	761
9	A Stable Vanadium Redoxâ€Flow Battery with High Energy Density for Largeâ€6cale Energy Storage. Advanced Energy Materials, 2011, 1, 394-400.	10.2	688
10	Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries. CheM, 2018, 4, 1877-1892.	5.8	628
11	Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nature Energy, 2019, 4, 796-805.	19.8	621
12	Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions. Joule, 2019, 3, 1662-1676.	11.7	598
13	Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy, 2018, 3, 674-681.	19.8	557
14	Failure Mechanism for Fastâ€Charged Lithium Metal Batteries with Liquid Electrolytes. Advanced Energy Materials, 2015, 5, 1400993.	10.2	540
15	Understanding and applying coulombic efficiency in lithium metal batteries. Nature Energy, 2020, 5, 561-568.	19.8	526
16	High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nature Energy, 2019, 4, 551-559.	19.8	492
17	High Energy Density Lithium–Sulfur Batteries: Challenges of Thick Sulfur Cathodes. Advanced Energy Materials, 2015, 5, 1402290.	10.2	483
18	Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nature Nanotechnology, 2019, 14, 594-601.	15.6	451

#	Article	IF	Citations
19	High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes. Joule, 2018, 2, 1548-1558.	11.7	436
20	Bridging the academic and industrial metrics for next-generation practical batteries. Nature Nanotechnology, 2019, 14, 200-207.	15.6	420
21	Lithium Metal Anodes with Nonaqueous Electrolytes. Chemical Reviews, 2020, 120, 13312-13348.	23.0	393
22	Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nature Communications, 2015, 6, 6303.	5.8	392
23	Materials and Systems for Organic Redox Flow Batteries: Status and Challenges. ACS Energy Letters, 2017, 2, 2187-2204.	8.8	359
24	Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries. Joule, 2019, 3, 1094-1105.	11.7	358
25	A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nature Energy, 2018, 3, 508-514.	19.8	337
26	Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nature Energy, 2017, 2, 813-820.	19.8	326
27	New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. Nano Letters, 2017, 17, 7606-7612.	4.5	308
28	High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries. ACS Energy Letters, 2019, 4, 896-902.	8.8	302
29	Capacity Fading of Ni-Rich NCA Cathodes: Effect of Microcracking Extent. ACS Energy Letters, 2019, 4, 2995-3001.	8.8	297
30	Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nature Communications, 2014, 5, 3015.	5.8	290
31	Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nature Energy, 2021, 6, 723-732.	19.8	285
32	Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nature Energy, 2020, 5, 860-869.	19.8	278
33	A Localized High-Concentration Electrolyte with Optimized Solvents and Lithium Difluoro(oxalate)borate Additive for Stable Lithium Metal Batteries. ACS Energy Letters, 2018, 3, 2059-2067.	8.8	257
34	lonic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 8464.	5.2	229
35	Origin of lithium whisker formation and growth under stress. Nature Nanotechnology, 2019, 14, 1042-1047.	15.6	211
36	Molecular structure and stability of dissolved lithium polysulfide species. Physical Chemistry Chemical Physics, 2014, 16, 10923-10932.	1.3	210

#	Article	IF	Citations
37	Controlling Solid–Liquid Conversion Reactions for a Highly Reversible Aqueous Zinc–Iodine Battery. ACS Energy Letters, 2017, 2, 2674-2680.	8.8	207
38	Advances in the Development of Singleâ€Atom Catalysts for Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2200102.	11.1	202
39	Reaction Mechanisms for Long-Life Rechargeable Zn/MnO ₂ Batteries. Chemistry of Materials, 2019, 31, 2036-2047.	3.2	195
40	Role of inner solvation sheath within salt–solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28603-28613.	3.3	191
41	Towards Highâ€Performance Nonaqueous Redox Flow Electrolyte Via Ionic Modification of Active Species. Advanced Energy Materials, 2015, 5, 1400678.	10.2	181
42	Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes. Nature Nanotechnology, 2021, 16, 549-554.	15.6	171
43	A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR. Journal of Materials Chemistry A, 2016, 4, 5448-5456.	5.2	167
44	Glassy Li metal anode for high-performance rechargeable Li batteries. Nature Materials, 2020, 19, 1339-1345.	13.3	162
45	"Wine-Dark Sea―in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability. ACS Energy Letters, 2017, 2, 1156-1161.	8.8	160
46	How to Obtain Reproducible Results for Lithium Sulfur Batteries?. Journal of the Electrochemical Society, 2013, 160, A2288-A2292.	1.3	149
47	Stable Li Metal Anode with "lon–Solvent-Coordinated―Nonflammable Electrolyte for Safe Li Metal Batteries. ACS Energy Letters, 2019, 4, 483-488.	8.8	148
48	Addressing Passivation in Lithium–Sulfur Battery Under Lean Electrolyte Condition. Advanced Functional Materials, 2018, 28, 1707234.	7.8	143
49	On the Way Toward Understanding Solution Chemistry of Lithium Polysulfides for High Energy Li–S Redox Flow Batteries. Advanced Energy Materials, 2015, 5, 1500113.	10.2	142
50	Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator. Advanced Functional Materials, 2017, 27, 1704391.	7.8	141
51	Low-solvation electrolytes for high-voltage sodium-ion batteries. Nature Energy, 2022, 7, 718-725.	19.8	137
52	Progress and directions in low-cost redox-flow batteries for large-scale energy storage. National Science Review, 2017, 4, 91-105.	4.6	131
53	Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	131
54	Reaction heterogeneity in practical high-energy lithium–sulfur pouch cells. Energy and Environmental Science, 2020, 13, 3620-3632.	15.6	127

#	Article	IF	CITATIONS
55	Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li LiCoO ₂ Batteries. Advanced Materials, 2020, 32, e2004898.	11.1	123
56	Improving Lithium–Sulfur Battery Performance under Lean Electrolyte through Nanoscale Confinement in Soft Swellable Gels. Nano Letters, 2017, 17, 3061-3067.	4.5	122
57	Mechanism of Formation of Li ₇ P ₃ S ₁₁ Solid Electrolytes through Liquid Phase Synthesis. Chemistry of Materials, 2018, 30, 990-997.	3.2	118
58	Effect of the Anion Activity on the Stability of Li Metal Anodes in Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2016, 26, 3059-3066.	7.8	117
59	New Prelithiated V ₂ O ₅ Superstructure for Lithium-Ion Batteries with Long Cycle Life and High Power. ACS Energy Letters, 2020, 5, 31-38.	8.8	113
60	Following the Transient Reactions in Lithium–Sulfur Batteries Using an In Situ Nuclear Magnetic Resonance Technique. Nano Letters, 2015, 15, 3309-3316.	4.5	107
61	Revisit Carbon/Sulfur Composite for Li-S Batteries. Journal of the Electrochemical Society, 2013, 160, A1624-A1628.	1.3	98
62	Free-standing V2O5 electrode for flexible lithium ion batteries. Electrochemistry Communications, 2011, 13, 383-386.	2.3	93
63	Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes. Nano Letters, 2017, 17, 1602-1609.	4.5	91
64	Controlled Nucleation and Growth Process of Li ₂ S ₂ /Li ₂ S in Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2013, 160, A1992-A1996.	1.3	89
65	Detrimental Effects of Chemical Crossover from the Lithium Anode to Cathode in Rechargeable Lithium Metal Batteries. ACS Energy Letters, 2018, 3, 2921-2930.	8.8	89
66	Direct Observation of the Redistribution of Sulfur and Polysufides in Li–S Batteries During the First Cycle by In Situ Xâ€Ray Fluorescence Microscopy. Advanced Energy Materials, 2015, 5, 1500072.	10.2	84
67	Metal–Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries. Nano Letters, 2016, 16, 4335-4340.	4.5	79
68	Enabling High-Energy-Density Cathode for Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23094-23102.	4.0	67
69	Restricting the Solubility of Polysulfides in Liâ€S Batteries Via Electrolyte Salt Selection. Advanced Energy Materials, 2016, 6, 1600160.	10.2	66
70	Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries. Energy Storage Materials, 2021, 34, 76-84.	9.5	65
71	An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes. Journal of the Electrochemical Society, 2016, 163, A5150-A5153.	1.3	64
72	Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries. Journal of Energy Chemistry, 2021, 60, 32-60.	7.1	64

#	Article	IF	CITATIONS
73	Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds. Scientific Reports, 2015, 5, 14117.	1.6	62
74	Enhanced Stability of Lithium Metal Anode by using a 3D Porous Nickel Substrate. ChemElectroChem, 2018, 5, 761-769.	1.7	58
75	High-Performance Aqueous Zinc–Manganese Battery with Reversible Mn2+/Mn4+ Double Redox Achieved by Carbon Coated MnOx Nanoparticles. Nano-Micro Letters, 2020, 12, 110.	14.4	58
76	In situ TEM visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries. Matter, 2022, 5, 1235-1250.	5 . 0	56
77	High performance Li-ion sulfur batteries enabled by intercalation chemistry. Chemical Communications, 2015, 51, 13454-13457.	2.2	55
78	Unlocking the passivation nature of the cathode–air interfacial reactions in lithium ion batteries. Nature Communications, 2020, 11, 3204.	5 . 8	55
79	Molecular-confinement of polysulfides within mesoscale electrodes for the practical application of lithium sulfur batteries. Nano Energy, 2015, 13, 267-274.	8.2	50
80	Near surface nucleation and particle mediated growth of colloidal Au nanocrystals. Nanoscale, 2018, 10, 11907-11912.	2.8	48
81	Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14741-14748.	4.0	47
82	Reversible Electrochemical Interface of Mg Metal and Conventional Electrolyte Enabled by Intermediate Adsorption. ACS Energy Letters, 2020, 5, 200-206.	8.8	44
83	Good Practices for Rechargeable Lithium Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A4141-A4149.	1.3	42
84	The Quest for Stable Potassiumâ€lon Battery Chemistry. Advanced Materials, 2022, 34, e2106876.	11.1	41
85	Electrode materials for aqueous multivalent metal-ion batteries: Current status and future prospect. Journal of Energy Chemistry, 2022, 67, 563-584.	7.1	36
86	Effects of Anion Mobility on Electrochemical Behaviors of Lithium–Sulfur Batteries. Chemistry of Materials, 2017, 29, 9023-9029.	3.2	35
87	Surface/Interface Structure and Chemistry of Lithium–Sulfur Batteries: From Density Functional Theory Calculations' Perspective. Advanced Energy and Sustainability Research, 2021, 2, 2100007.	2.8	27
88	Revisiting the Growth Mechanism of Hierarchical Semiconductor Nanostructures: The Role of Secondary Nucleation in Branch Formation. Journal of Physical Chemistry Letters, 2019, 10, 6827-6834.	2.1	20
89	High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties. Materials, 2020, 13, 334.	1.3	20
90	Systematic Evaluation of Carbon Hosts for High-Energy Rechargeable Lithium-Metal Batteries. ACS Energy Letters, 0, , 1550-1559.	8.8	20

#	Article	IF	CITATION
91	Designing Advanced Liquid Electrolytes for Alkali Metal Batteries: Principles, Progress, and Perspectives. Energy and Environmental Materials, 2023, 6, .	7.3	19
92	Minimizing Polysulfide Shuttle Effect in Lithium-Ion Sulfur Batteries by Anode Surface Passivation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 21965-21972.	4.0	18
93	Controlling Metal–Organic Framework/ZnO Heterostructure Kinetics through Selective Ligand Binding to ZnO Surface Steps. Chemistry of Materials, 2020, 32, 6666-6675.	3.2	16
94	Energy Material Advances: From Fundamental Discoveries to Practical Applications. Energy Material Advances, 2020, 2020, .	4.7	16
95	Wet-chemical synthesis of Li7P3S11 with tailored particle size for solid state electrolytes. Chemical Engineering Journal, 2022, 429, 132334.	6.6	12
96	Early Failure of Lithium–Sulfur Batteries at Practical Conditions: Crosstalk between Sulfur Cathode and Lithium Anode. Advanced Science, 2022, 9, e2201640.	5.6	12
97	Role of the Solvent–Surfactant Duality of Ionic Liquids in Directing Two-Dimensional Particle Assembly. Journal of Physical Chemistry C, 2020, 124, 24215-24222.	1.5	8
98	Lithiumâ€Metal Batteries: Highâ€Voltage Lithiumâ€Metal Batteries Enabled by Localized Highâ€Concentration Electrolytes (Adv. Mater. 21/2018). Advanced Materials, 2018, 30, 1870144.	11.1	4
99	Double Epitaxy as a Paradigm for Templated Growth of Highly Ordered Three-Dimensional Mesophase Crystals. ACS Nano, 2016, 10, 8670-8675.	7.3	2
100	Enabling High-Voltage Lithium Metal Batteries Under Practical Conditions. SSRN Electronic Journal, 0,	0.4	0