Georges Feller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1753785/publications.pdf

Version: 2024-02-01

361413 361022 3,961 38 20 citations h-index papers

g-index 38 38 38 3921 docs citations times ranked citing authors all docs

35

#	Article	IF	CITATIONS
1	1,2,4â€Triazoleâ€3â€Thione Analogues with a 2â€Ethylbenzoic Acid at Position 4 as VIMâ€type Metalloâ€Ĵ²â€Lac Inhibitors. ChemMedChem, 2022, 17, .	tamase	9
2	Function and versatile location of Met-rich inserts in blue oxidases involved in bacterial copper resistance. Biochimie, 2022, 194, 118-126.	2.6	4
3	Amyrel, a novel glucose-forming \hat{l} ±-amylase from <i>Drosophila</i> with 4- \hat{l} ±-glucanotransferase activity by disproportionation and hydrolysis of maltooligosaccharides. Glycobiology, 2021, 31, 1134-1144.	2.5	11
4	4-Alkyl-1,2,4-triazole-3-thione analogues as metallo- \hat{l}^2 -lactamase inhibitors. Bioorganic Chemistry, 2021, 113, 105024.	4.1	12
5	4-(N-Alkyl- and -Acyl-amino)-1,2,4-triazole-3-thione Analogs as Metallo- \hat{l}^2 -Lactamase Inhibitors: Impact of 4-Linker on Potency and Spectrum of Inhibition. Biomolecules, 2020, 10, 1094.	4.0	15
6	Structural determinants increasing flexibility confer cold adaptation in psychrophilic phosphoglycerate kinase. Extremophiles, 2019, 23, 495-506.	2.3	13
7	Protein folding at extreme temperatures: Current issues. Seminars in Cell and Developmental Biology, 2018, 84, 129-137.	5.0	35
8	Biochemical and structural characterization of a mannose binding jacalin-related lectin with two-sugar binding sites from pineapple (Ananas comosus) stem. Scientific Reports, 2018, 8, 11508.	3.3	17
9	PEGylated and Functionalized Aliphatic Polycarbonate Polyplex Nanoparticles for Intravenous Administration of HDAC5 siRNA in Cancer Therapy. ACS Applied Materials & Enterfaces, 2017, 9, 2181-2195.	8.0	21
10	Deciphering the factors defining the pH-dependence of a commercial glycoside hydrolase family 8 enzyme. Enzyme and Microbial Technology, 2017, 96, 163-169.	3.2	9
11	Cryosphere and Psychrophiles: Insights into a Cold Origin of Life?. Life, 2017, 7, 25.	2.4	35
12	Production, purification, and characterization of a novel cold-active superoxide dismutase from the Antarctic strain Aspergillus glaucus 363. Fungal Biology, 2016, 120, 679-689.	2.5	21
13	A single amino-acid substitution toggles chloride dependence of the alpha-amylase paralog amyrel in Drosophila melanogaster and Drosophila virilis species. Insect Biochemistry and Molecular Biology, 2016, 75, 70-77.	2.7	14
14	Activity–stability relationships revisited in blue oxidases catalyzing electron transfer at extreme temperatures. Extremophiles, 2016, 20, 621-629.	2.3	12
15	Anti-Biofilm Activities from Marine Cold Adapted Bacteria Against Staphylococci and Pseudomonas aeruginosa. Frontiers in Microbiology, 2015, 6, 1333.	3.5	53
16	Multiple disulfide bridges modulate conformational stability and flexibility in hyperthermophilic archaeal purine nucleoside phosphorylase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1458-1465.	2.3	9
17	Functional adaptations of the bacterial chaperone trigger factor to extreme environmental temperatures. Environmental Microbiology, 2015, 17, 2407-2420.	3.8	25
18	Psychrophilic Enzymes: From Folding to Function and Biotechnology. Scientifica, 2013, 2013, 1-28.	1.7	235

#	Article	IF	CITATIONS
19	Enzymatic characterization of recombinant α-amylase in the <i>Drosophila melanogaster</i> species subgroup: is there an effect of specialization on digestive enzyme?. Genes and Genetic Systems, 2013, 88, 251-259.	0.7	11
20	Optimization to Low Temperature Activity in Psychrophilic Enzymes. International Journal of Molecular Sciences, 2012, 13, 11643-11665.	4.1	191
21	Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie, 2012, 94, 1943-1950.	2.6	67
22	How to remain nonfolded and pliable: the linkers in modular αâ€amylases as a case study. FEBS Journal, 2011, 278, 2333-2340.	4.7	7
23	Stepwise Adaptations to Low Temperature as Revealed by Multiple Mutants of Psychrophilic α-Amylase from Antarctic Bacterium. Journal of Biological Chemistry, 2011, 286, 38348-38355.	3.4	28
24	Protein stability and enzyme activity at extreme biological temperatures. Journal of Physics Condensed Matter, 2010, 22, 323101.	1.8	245
25	Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium <i>Pseudoalteromonas haloplanktis</i> TAC125. Molecular Microbiology, 2010, 76, 120-132.	2.5	91
26	Life at low temperatures: is disorder the driving force?. Extremophiles, 2007, 11, 211-216.	2.3	96
27	Psychrophilic microorganisms: challenges for life. EMBO Reports, 2006, 7, 385-389.	4.5	702
28	Microcalorimetry as Applied to Psychrophilic Enzymes. , 2005, , 231-240.		0
29	Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Research, 2005, 15, 1325-1335.	5.5	367
30	Psychrophilic enzymes: hot topics in cold adaptation. Nature Reviews Microbiology, 2003, 1, 200-208.	28.6	969
31	Did psychrophilic enzymes really win the challenge?. Extremophiles, 2001, 5, 313-321.	2.3	62
32	Structural similarities and evolutionary relationships in chloride-dependent α-amylases. Gene, 2000, 253, 95-105.	2.2	94
33	Thermodynamic Stability of a Cold-Active α-Amylase from the Antarctic BacteriumAlteromonas haloplanctisâ€. Biochemistry, 1999, 38, 4613-4619.	2.5	165
34	Structural and Functional Aspects of Chloride Binding to Alteromonas haloplanctis \hat{l}_{\pm} -Amylase. Journal of Biological Chemistry, 1996, 271, 23836-23841.	3.4	94
35	Enzymes from psychrophilic organisms. FEMS Microbiology Reviews, 1996, 18, 189-202.	8.6	14
36	Stability and structural analysis of alpha-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. FEBS Journal, 1994, 222, 441-447.	0.2	194

#	Article	IF	CITATIONS
37	Cold-Adapted Enzymes. , 0, , 165-179.		13
38	Polar Microorganisms and Biotechnology. , 0, , 166-180.		1