Georges Feller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1753785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Psychrophilic enzymes: hot topics in cold adaptation. Nature Reviews Microbiology, 2003, 1, 200-208.	28.6	969
2	Psychrophilic microorganisms: challenges for life. EMBO Reports, 2006, 7, 385-389.	4.5	702
3	Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Research, 2005, 15, 1325-1335.	5.5	367
4	Protein stability and enzyme activity at extreme biological temperatures. Journal of Physics Condensed Matter, 2010, 22, 323101.	1.8	245
5	Psychrophilic Enzymes: From Folding to Function and Biotechnology. Scientifica, 2013, 2013, 1-28.	1.7	235
6	Stability and structural analysis of alpha-amylase from the antarctic psychrophile Alteromonas haloplanctis A23. FEBS Journal, 1994, 222, 441-447.	0.2	194
7	Optimization to Low Temperature Activity in Psychrophilic Enzymes. International Journal of Molecular Sciences, 2012, 13, 11643-11665.	4.1	191
8	Thermodynamic Stability of a Cold-Active α-Amylase from the Antarctic BacteriumAlteromonas haloplanctisâ€. Biochemistry, 1999, 38, 4613-4619.	2.5	165
9	Life at low temperatures: is disorder the driving force?. Extremophiles, 2007, 11, 211-216.	2.3	96
10	Structural and Functional Aspects of Chloride Binding to Alteromonas haloplanctis α-Amylase. Journal of Biological Chemistry, 1996, 271, 23836-23841.	3.4	94
11	Structural similarities and evolutionary relationships in chloride-dependent α-amylases. Gene, 2000, 253, 95-105.	2.2	94
12	Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium <i>Pseudoalteromonas haloplanktis</i> TAC125. Molecular Microbiology, 2010, 76, 120-132.	2.5	91
13	Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie, 2012, 94, 1943-1950.	2.6	67
14	Did psychrophilic enzymes really win the challenge?. Extremophiles, 2001, 5, 313-321.	2.3	62
15	Anti-Biofilm Activities from Marine Cold Adapted Bacteria Against Staphylococci and Pseudomonas aeruginosa. Frontiers in Microbiology, 2015, 6, 1333.	3.5	53
16	Cryosphere and Psychrophiles: Insights into a Cold Origin of Life?. Life, 2017, 7, 25.	2.4	35
17	Protein folding at extreme temperatures: Current issues. Seminars in Cell and Developmental Biology, 2018, 84, 129-137.	5.0	35
18	Stepwise Adaptations to Low Temperature as Revealed by Multiple Mutants of Psychrophilic α-Amylase from Antarctic Bacterium. Journal of Biological Chemistry, 2011, 286, 38348-38355.	3.4	28

GEORGES FELLER

#	Article	IF	CITATIONS
19	Functional adaptations of the bacterial chaperone trigger factor to extreme environmental temperatures. Environmental Microbiology, 2015, 17, 2407-2420.	3.8	25
20	Production, purification, and characterization of a novel cold-active superoxide dismutase from the Antarctic strain Aspergillus glaucus 363. Fungal Biology, 2016, 120, 679-689.	2.5	21
21	PEGylated and Functionalized Aliphatic Polycarbonate Polyplex Nanoparticles for Intravenous Administration of HDAC5 siRNA in Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 2181-2195.	8.0	21
22	Biochemical and structural characterization of a mannose binding jacalin-related lectin with two-sugar binding sites from pineapple (Ananas comosus) stem. Scientific Reports, 2018, 8, 11508.	3.3	17
23	4-(N-Alkyl- and -Acyl-amino)-1,2,4-triazole-3-thione Analogs as Metallo-β-Lactamase Inhibitors: Impact of 4-Linker on Potency and Spectrum of Inhibition. Biomolecules, 2020, 10, 1094.	4.0	15
24	A single amino-acid substitution toggles chloride dependence of the alpha-amylase paralog amyrel in Drosophila melanogaster and Drosophila virilis species. Insect Biochemistry and Molecular Biology, 2016, 75, 70-77.	2.7	14
25	Enzymes from psychrophilic organisms. FEMS Microbiology Reviews, 1996, 18, 189-202.	8.6	14
26	Structural determinants increasing flexibility confer cold adaptation in psychrophilic phosphoglycerate kinase. Extremophiles, 2019, 23, 495-506.	2.3	13
27	Cold-Adapted Enzymes. , 0, , 165-179.		13
28	Activity–stability relationships revisited in blue oxidases catalyzing electron transfer at extreme temperatures. Extremophiles, 2016, 20, 621-629.	2.3	12
29	4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors. Bioorganic Chemistry, 2021, 113, 105024.	4.1	12
30	Enzymatic characterization of recombinant α-amylase in the <i>Drosophila melanogaster</i> species subgroup: is there an effect of specialization on digestive enzyme?. Genes and Genetic Systems, 2013, 88, 251-259.	0.7	11
31	Amyrel, a novel glucose-forming α-amylase from <i>Drosophila</i> with 4-α-glucanotransferase activity by disproportionation and hydrolysis of maltooligosaccharides. Glycobiology, 2021, 31, 1134-1144.	2.5	11
32	Multiple disulfide bridges modulate conformational stability and flexibility in hyperthermophilic archaeal purine nucleoside phosphorylase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1458-1465.	2.3	9
33	Deciphering the factors defining the pH-dependence of a commercial glycoside hydrolase family 8 enzyme. Enzyme and Microbial Technology, 2017, 96, 163-169.	3.2	9
34	1,2,4â€Triazoleâ€3â€Thione Analogues with a 2â€Ethylbenzoic Acid at Position 4 as VIMâ€ŧype Metalloâ€Î²â€La Inhibitors. ChemMedChem, 2022, 17, .	ctamase	9
35	How to remain nonfolded and pliable: the linkers in modular αâ€amylases as a case study. FEBS Journal, 2011, 278, 2333-2340.	4.7	7
36	Function and versatile location of Met-rich inserts in blue oxidases involved in bacterial copper resistance. Biochimie, 2022, 194, 118-126.	2.6	4

0

#	Article	IF	CITATIONS
37	Polar Microorganisms and Biotechnology. , 0, , 166-180.		1

Microcalorimetry as Applied to Psychrophilic Enzymes. , 2005, , 231-240.