Kohshin Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1753470/publications.pdf

Version: 2024-02-01

102 papers 3,075 citations

28 h-index 53 g-index

102 all docs 102 docs citations 102 times ranked 3659 citing authors

#	Article	IF	CITATIONS
1	lonic Liquid-Assisted MAPbl ₃ Nanoparticle-Seeded Growth for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & (2021, 13, 21194-21206).	8.0	47
2	Selective Extraction of Nonfullerene Acceptors from Bulk-Heterojunction Layer in Organic Solar Cells for Detailed Analysis of Microstructure. Materials, 2021, 14, 2107.	2.9	3
3	The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics. Chemical Engineering Journal, 2021, 411, 128461.	12.7	70
4	Study on Properties of Low-Temperature-Prepared Zinc Oxide-Based Inverted Organic Solar Cells and Improvement of their Photodurability. ACS Applied Energy Materials, 2021, 4, 6385-6390.	5.1	10
5	Study on photo-degradation of inverted organic solar cells caused by generation of potential barrier between PEDOT:PSS and PBDB-Ts. Sustainable Energy and Fuels, 2021, 5, 3092-3096.	4.9	6
6	Factors contributing to degradation of organic photovoltaic cells. Organic Electronics, 2020, 76, 105448.	2.6	22
7	Low-Temperature Processed TiOx Electron Transport Layer for Efficient Planar Perovskite Solar Cells. Nanomaterials, 2020, 10, 1676.	4.1	13
8	Metal Oxide Compact Electron Transport Layer Modification for Efficient and Stable Perovskite Solar Cells. Materials, 2020, 13, 2207.	2.9	42
9	Thermal Control of Pbl ₂ Film Growth for Two-Step Planar Perovskite Solar Cells. Crystal Growth and Design, 2019, 19, 5320-5325.	3.0	18
10	Thin film deposition method for ZnO nanosheets using low-temperature microwave-excited atmospheric pressure plasma jet. Thin Solid Films, 2019, 674, 58-63.	1.8	4
11	Effects of optical interference and optimized crystallinity in organic photovoltaic cells with a low-bandgap small molecule fabricated by dry process. Japanese Journal of Applied Physics, 2019, 58, SBBG12.	1.5	0
12	High performance photoanodic catalyst prepared from an active organic photovoltaic cell – high potential gain from visible light. Chemical Communications, 2019, 55, 12491-12494.	4.1	6
13	Nanopore analysis of blended organic semiconducting films to clarify photovoltaic performance. Organic Electronics, 2019, 66, 76-80.	2.6	3
14	Influence of coating steps of perovskite on low-temperature amorphous compact TiO <i> _x </i> upon the morphology, crystallinity, and photovoltaic property correlation in planar perovskite solar cells. Japanese Journal of Applied Physics, 2018, 57, 03EJ06.	1.5	8
15	Interface engineering of compact-TiOx in planar perovskite solar cells using low-temperature processable high-mobility fullerene derivative. Solar Energy Materials and Solar Cells, 2018, 178, 1-7.	6.2	29
16	Identifying Molecular Orientation in a Bulk Heterojunction Film by Infrared Reflection Absorption Spectroscopy. ACS Omega, 2018, 3, 5678-5684.	3 . 5	12
17	Planar heterojunction perovskite solar cells fabricated by wet process. , 2017, , .		O
18	Mechanism of Light-Soaking Effect in Inverted Polymer Solar Cells with Open-Circuit Voltage Increase. ACS Omega, 2017, 2, 1617-1624.	3. 5	10

#	Article	IF	Citations
19	Viscosity effect of ionic liquid-assisted controlled growth of CH3NH3PbI3 nanoparticle-based planar perovskite solar cells. Organic Electronics, 2017, 48, 147-153.	2.6	30
20	Annealing effects on CsPbI ₃ -based planar heterojunction perovskite solar cells formed by vacuum deposition method. Japanese Journal of Applied Physics, 2017, 56, 04CS11.	1.5	35
21	Improved Reproducibility and Intercalation Control of Efficient Planar Inorganic Perovskite Solar Cells by Simple Alternate Vacuum Deposition of Pbl ₂ and Csl. ACS Omega, 2017, 2, 4464-4469.	3.5	49
22	Flexible inverted polymer solar cells fabricated in air at low temperatures. Japanese Journal of Applied Physics, 2016, 55, 086501.	1.5	5
23	Degradation mechanism for planar heterojunction perovskite solar cells. Japanese Journal of Applied Physics, 2016, 55, 04ES07.	1.5	10
24	Synthesis of Thieno $[3,4-\langle i\rangle b\langle i\rangle]$ thiophene-Based Donor Molecules with Phenyl Ester Pendants for Organic Solar Cells: Control of Photovoltaic Properties via Single Substituent Replacement. ChemistrySelect, 2016, 1, 703-709.	1.5	9
25	Interpenetrating heterojunction photovoltaic cells based on C60 nano-crystallized thin films. Organic Electronics, 2016, 38, 107-114.	2.6	4
26	Shape-controlled CH ₃ NH ₃ Pbl ₃ nanoparticles for planar heterojunction perovskite solar cells. Japanese Journal of Applied Physics, 2016, 55, 02BF05.	1.5	11
27	Insertion of interlayers in efficient polymer-based organic solar cells for control of phase separation. Japanese Journal of Applied Physics, 2016, 55, 02BF03.	1.5	2
28	Planar heterojunction type perovskite solar cells based on TiOxcompact layer fabricated by chemical bath deposition. , $2016, , .$		4
29	Enhanced Photovoltaic Performance of Perovskite Solar Cells via Modification of Surface Characteristics Using a Fullerene Interlayer. Chemistry Letters, 2015, 44, 1735-1737.	1.3	28
30	Study of planar heterojunction perovskite photovoltaic cells using compact titanium oxide by chemical bath deposition. Japanese Journal of Applied Physics, 2015, 54, 08KF02.	1.5	9
31	Mechanistic Investigation into the Light Soaking Effect Observed in Inverted Polymer Solar Cells Containing Chemical Bath Deposited Titanium Oxide. Journal of Physical Chemistry C, 2015, 119, 5274-5280.	3.1	21
32	Influence of 4â€fluorophenyl pendants in thieno[3,4â€b]thiopheneâ€benzo[1,2â€b:4,5â€b′]dithiopheneâ€bas polymers on the performance of photovoltaics. Journal of Polymer Science Part A, 2015, 53, 1586-1593.	sed 2.3	3
33	lonic liquid-assisted growth of methylammonium lead iodide spherical nanoparticles by a simple spin-coating method and photovoltaic properties of perovskite solar cells. RSC Advances, 2015, 5, 77495-77500.	3.6	60
34	Insertion effects of interlayers for efficient polymer-based organic solar cells. Japanese Journal of Applied Physics, 2015, 54, 08KF05.	1.5	1
35	Factors affecting the photovoltaic behavior of inverted polymer solar cells using various indium tin oxide electrodes modified by amines with simple chemical structures. Thin Solid Films, 2015, 591, 49-54.	1.8	7
36	Electrocatalytic activity of electrodeposited cobalt oxide films to produce oxygen gas from water. Journal of Electroanalytical Chemistry, 2015, 740, 14-20.	3.8	7

3

#	Article	IF	CITATIONS
37	Thieno[3,4-b]thiophene–benzo[1,2-b:4,5-b′]dithiophene-based polymers bearing optically pure 2-ethylhexyl pendants: Synthesis and application in polymer solar cells. Polymer, 2015, 56, 171-177.	3.8	14
38	Efficient small-molecule photovoltaic cells using nanostructured template. Proceedings of SPIE, 2014,	0.8	1
39	Development of bifacial inverted polymer solar cells using a conductivity-controlled transparent PEDOT:PSS and a striped Au electrode on the hole collection side. Japanese Journal of Applied Physics, 2014, 53, 02BE07.	1.5	2
40	Effect of the solvent used to prepare the photoactive layer on the performance of inverted bulk heterojunction polymer solar cells. Japanese Journal of Applied Physics, 2014, 53, 02BE06.	1.5	15
41	Effect of UV light irradiation on photovoltaic characteristics of inverted polymer solar cells containing sol–gel zinc oxide electron collection layer. Organic Electronics, 2013, 14, 649-656.	2.6	38
42	Efficient Smallâ€Molecule Photovoltaic Cells Using a Crystalline Diindenoperylene Film as a Nanostructured Template. Advanced Materials, 2013, 25, 6069-6075.	21.0	39
43	Synthesis of seleno[3,4-c]pyrrole-4,6-dione-based polymers for polymer solar cells. Synthetic Metals, 2012, 162, 1707-1712.	3.9	9
44	Fullerene acceptor for improving open-circuit voltage in inverted organic photovoltaic devices without accompanying decrease in short-circuit current density. Applied Physics Letters, 2012, 100, 063303.	3.3	23
45	Flexible inverted polymer solar cells on polyethylene terephthalate substrate containing zinc oxide electron-collection-layer prepared by novel sol–gel method and low-temperature treatments. Organic Electronics, 2012, 13, 1136-1140.	2.6	35
46	Synthesis and Characterization of Thieno[3,4- <i>b</i>]thiophene-Based Copolymers Bearing 4-Substituted Phenyl Ester Pendants: Facile Fine-Tuning of HOMO Energy Levels. Macromolecules, 2011, 44, 6659-6662.	4.8	22
47	Flexible inverted polymer solar cells containing an amorphous titanium oxide electron collection electrode. Organic Electronics, 2011, 12, 113-118.	2.6	25
48	Oxygen reduction at negatively charged iron porphyrins heat-treated and bridged by alkaline-earth metal ions. Electrochimica Acta, 2010, 55, 6042-6048.	5.2	6
49	Inverted bulk-heterojunction organic solar cell using chemical bath deposited titanium oxide as electron collection layer. Organic Electronics, 2010, 11, 1136-1140.	2.6	88
50	Mechanistic Insights into UV-Induced Electron Transfer from PCBM to Titanium Oxide in Inverted-Type Organic Thin Film Solar Cells Using AC Impedance Spectroscopy. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2254-2260.	8.0	91
51	Inverted type bulk-heterojunction organic solar cell using electrodeposited titanium oxide thin films as electron collector electrode. Thin Solid Films, 2009, 517, 3766-3769.	1.8	94
52	Characterization of Inverted-Type Organic Solar Cells with a ZnO Layer as the Electron Collection Electrode by ac Impedance Spectroscopy. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2107-2110.	8.0	166
53	Characterization of ZnS-layer-inserted bulk-heterojunction organic solar cells by ac impedance spectroscopy. Journal of Applied Physics, 2009, 105, 124513.	2.5	44
54	Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer. Solar Energy Materials and Solar Cells, 2008, 92, 1476-1482.	6.2	159

#	Article	IF	CITATIONS
55	Effect of Microstructure and Crystalline Orientation of Pt Single- or Pt/Ru Bilayer-Electrodes on the Work Function and Leakage Current of SrTiO3Capacitors. Japanese Journal of Applied Physics, 2008, 47, 6374-6379.	1.5	3
56	Efficiency Increase by Insertion of Electrodeposited CuSCN Layer into ITO/Organic Solid Interface in Bulk Hetero-junction Solar Cells Consisting of Polythiophene and Fullerene. Chemistry Letters, 2007, 36, 762-763.	1.3	19
57	Electrocatalytic Activity of Electropolymerized Meldola's Blue toward Oxidation of Dopamine. Electrochemistry, 2006, 74, 32-41.	1.4	5
58	Voltammetric and Impedance Study of Interaction of Indigo Ion with Thiol Monolayers having Terminal Amino Groups Modified Gold Electrode. Electrochemistry, 2006, 74, 59-64.	1.4	1
59	Performance Improvement by Inserting an Electrodeposited ZnO into ITO/Organic Solid Interface in Organic Solid-state Solar Cells. Chemistry Letters, 2005, 34, 768-769.	1.3	11
60	Performance Enhancement by Blending Merocyanine Photosensitizer in TiO2/Polythiophen Solid-state Solar Cells. Chemistry Letters, 2005, 34, 714-715.	1.3	13
61	Porphyrin dye-sensitization of polythiophene in a conjugated polymer/TiO2 p–n hetero-junction solar cell. Synthetic Metals, 2005, 155, 51-55.	3.9	28
62	Relation between carrier mobility and cell performance in bulk heterojunction solar cells consisting of soluble polythiophene and fullerene derivatives. Applied Physics Letters, 2005, 87, 132105.	3.3	73
63	Efficient organic solar cells by penetration of conjugated polymers into perylene pigments. Journal of Applied Physics, 2004, 96, 6878-6883.	2.5	37
64	The Photovoltaic Mechanism of a Polythiophene/Perylene Pigment Two-Layer Solar Cell. Bulletin of the Chemical Society of Japan, 2004, 77, 2185-2188.	3.2	12
65	Performance Enhancement by Blending an Electron Acceptor in TiO2/polyphenylenevinylene/Au Solid-state Solar Cells. Chemistry Letters, 2004, 33, 1042-1043.	1.3	22
66	Electron transfer rate of redox ion controlled by electrostatic interaction with bilayer films assembled using thiolate–copper ion–carboxylate bridges. Electrochimica Acta, 2003, 48, 589-597.	5.2	1
67	High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2003, 79, 459-469.	6.2	641
68	Sensitization Effect of Porphyrin Dye on the Photocurrent of Al/Polythiophene Schottky-Barrier Cells. Journal of Physical Chemistry B, 2003, 107, 1646-1652.	2.6	24
69	Merocyanine Dye-Sensitization of Polythiophene in a Conjugated Polymer/TiO2p–n Hetero-Junction Solar Cell. Bulletin of the Chemical Society of Japan, 2003, 76, 2277-2283.	3.2	16
70	Activated Carbon Counter Electrode for Dye-sensitized Solar Cell. Electrochemistry, 2003, 71, 944-946.	1.4	35
71	Characterization of water-soluble externally HCl-doped conducting polyaniline. Synthetic Metals, 2002, 128, 27-33.	3.9	44
72	Enhanced photocurrent by Schottky-barrier solar cell composed of regioregular polythiophene with merocyanine dye. Synthetic Metals, 2002, 130, 177-183.	3.9	22

#	Article	IF	Citations
73	Electrostatic incorporation of alizarin red S into poly[1-methyl-3-(pyrrol-1-ylmethyl)pyridinium] films. Electrochimica Acta, 2002, 47, 1713-1719.	5.2	2
74	Organic solid-state solar cells with a mixture of monomeric porphyrins for light-harvesting and regioregular polythiophene for charge transport. Synthetic Metals, 2001, 123, 91-94.	3.9	28
75	Electrochemical characteristics of viologen carboxylic acid derivatives assembled onto Au electrode as a synthetic receptor for electron-rich compounds. Electrochimica Acta, 2001, 46, 2527-2535.	5.2	5
76	Electrocatalytic Oxidation of NADH at Polythionine-modified Electrodes as Studied by Rotating Disk Voltammetry. Electrochemistry, 2001, 69, 165-170.	1.4	1
77	Three-layer organic solar cell with high-power conversion efficiency of 3.5%. Solar Energy Materials and Solar Cells, 2000, 61, 403-416.	6.2	58
78	Charge Transport Properties of Polythionine Films Dependent on Electrode Potential and Solution pH. Electrochemistry, 2000, 68, 17-23.	1.4	1
79	Contribution of Electricâ€Fieldâ€Induced Metalâ€Free Porphyrin Dication to Photocurrent in Mixed Solid of Metalâ€Free Porphyrin and oâ€Chloranil/Al Schottkyâ€Barrier Cell. Journal of the Electrochemical Society, 1999, 146, 1717-1723.	2.9	7
80	Dioxygen-activated reductive epoxidation of cyclohexene using Mn(III) porphyrin as catalyst and hexylviologen as electron mediator. Journal of Molecular Catalysis A, 1999, 138, 145-153.	4.8	13
81	Highly selective epoxidation of cyclohexene by reductive activation of molecular dioxygen using hexylviologen as catalyst. Journal of Molecular Catalysis A, 1999, 148, 183-187.	4.8	10
82	Epoxidation of cyclohexene with active oxygen species produced by reducing dioxygen in the presence of Brâ ⁻ ion. Journal of the Chemical Society Perkin Transactions II, 1999, , 1335-1342.	0.9	3
83	Enhanced Photocurrent in Al/Porphyrin Schottky Barrier Cell with Heterodimer Consisting of Metal-Free Porphyrin and Zinc Porphyrin. Journal of Physical Chemistry B, 1999, 103, 4868-4875.	2.6	32
84	Electron Transfer Rate of Indigotetrasulfonate Ion Changed with Protonation of 4-Aminothiophenol Monolayer-modified Electrode. Electrochemistry, 1999, 67, 843-849.	1.4	2
85	Photocurrent increment in organic solar cell with mixed solid of merocyanine and zinc porphyrin. Thin Solid Films, 1998, 333, 256-263.	1.8	9
86	Catalytic epoxidation of cyclohexene by covalently linked manganese porphyrin–viologen complex. Journal of Molecular Catalysis A, 1998, 130, 285-295.	4.8	20
87	Simple synthesis of water-soluble conducting polyaniline. Synthetic Metals, 1998, 96, 161-163.	3.9	89
88	Dioxygen-activated Reductive Epoxidation of Cyclohexene Using Mn(III) Porphyrin-viologen Catalytic Systems Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1998, 1998, 581-590.	0.1	0
89	Photocurrent from photocorrosion of aluminum electrode in porphyrin/Al Schottky-barrier cells. Applied Physics Letters, 1997, 71, 674-676.	3.3	29
90	Enhanced Photocurrent Quantum Yield by Electronic Interaction between Zinc Porphyrin and Rhodamine B Molecules in Al/Dye/Au Sandwich-Type Solar Cell. Journal of Physical Chemistry B, 1997, 101, 991-997.	2.6	24

#	Article	IF	CITATION
91	Photoinduced electron transfer from porphyrin to C60 in a C60 porphyrin double-layer photoelectrochemical cell. Journal of Electroanalytical Chemistry, 1997, 426, 85-90.	3.8	13
92	Longâ€lived excited state of C60 in C60/phthalocyanine heterojunction solar cell. Applied Physics Letters, 1996, 68, 427-429.	3.3	63
93	Electrocatalytic Epoxidation of Cyclohexene by Manganese(III) Porphyrin Using Electron Mediator. Bulletin of the Chemical Society of Japan, 1994, 67, 847-853.	3.2	12
94	Enhanced Quantum Yield in Porphyrin Solar Cell with Redox Chain for Electron Transfer. Chemistry Letters, 1994, 23, 2001-2004.	1.3	17
95	Spectral Cosensitization in Organic Solar Cell with Mixed Film of Zinc Porphyrin and Merocyanine. Chemistry Letters, 1994, 23, 269-272.	1.3	6
96	Photoelectrochemical Cell Sensitized by Porphyrin Heterodimer. Electrochemistry, 1994, 62, 607-613.	0.3	1
97	Photovoltaic Properties of Porphyrin Thin Films Mixed witho-Chloranil. Bulletin of the Chemical Society of Japan, 1993, 66, 733-738.	3.2	92
98	Enhanced Quantum Yield in Porphyrin Heterodimer Solar Cells. Chemistry Letters, 1993, 22, 613-616.	1.3	10
99	The Fluorescence Properties of (2-Nitro-5,10,15,20-tetraphenylporphyrinato)zinc. Bulletin of the Chemical Society of Japan, 1992, 65, 1475-1481.	3.2	19
100	Photoelectrochemical Properties of Thin Films of Cadmium, Zinc, and Magnesium Porphyrins with Pyridyl Group. Bulletin of the Chemical Society of Japan, 1990, 63, 3315-3316.	3.2	5
101	The Fluorescence Quenching of Zinc Porphyrins with the ï‰-[4-(4-Pyridyl)pyridinio]alkyl Group. Bulletin of the Chemical Society of Japan, 1989, 62, 3069-3074.	3.2	6
102	Photoelectrochemical Properties of Thin Films of Zinc Porphyrin Derivatives with Pyridyl Group.	3.2	22