
## Brinton Seashore-Ludlow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1753107/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF       | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 1  | Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547, 453-457.                                                                                                         | 27.8     | 1,194     |
| 2  | Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nature<br>Chemical Biology, 2016, 12, 109-116.                                                                                     | 8.0      | 636       |
| 3  | Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discovery, 2015, 5, 1210-1223.                                                                                                         | 9.4      | 575       |
| 4  | Predicting Cancer-Specific Vulnerability via Data-Driven Detection of Synthetic Lethality. Cell, 2014,<br>158, 1199-1209.                                                                                                  | 28.9     | 249       |
| 5  | Drug Target Commons: A Community Effort to Build a Consensus Knowledge Base for Drug-Target<br>Interactions. Cell Chemical Biology, 2018, 25, 224-229.e2.                                                                  | 5.2      | 124       |
| 6  | Validation and development of MTH1 inhibitors for treatment of cancer. Annals of Oncology, 2016, 27, 2275-2283.                                                                                                            | 1.2      | 111       |
| 7  | Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6231-E6239.            | 7.1      | 74        |
| 8  | NAMPT Is the Cellular Target of STF-31-Like Small-Molecule Probes. ACS Chemical Biology, 2014, 9, 2247-2254.                                                                                                               | 3.4      | 60        |
| 9  | Enantioselective Synthesis of <i>anti</i> -β-Hydroxy-α-amido Esters via Transfer Hydrogenation. Organic<br>Letters, 2010, 12, 5274-5277.                                                                                   | 4.6      | 59        |
| 10 | Domino Carbopalladation–Cross-Coupling for the Synthesis of 3,3-Disubstituted Oxindoles. Organic<br>Letters, 2012, 14, 3858-3861.                                                                                          | 4.6      | 57        |
| 11 | DiSCoVERing Innovative Therapies for Rare Tumors: Combining Genetically Accurate Disease Models<br>with <i>In Silico</i> Analysis to Identify Novel Therapeutic Targets. Clinical Cancer Research, 2016, 22,<br>3903-3914. | 7.0      | 54        |
| 12 | Targeting <scp>CDK</scp> 2 overcomes melanoma resistance against <scp>BRAF</scp> and Hsp90 inhibitors. Molecular Systems Biology, 2018, 14, e7858.                                                                         | 7.2      | 53        |
| 13 | Asymmetric Transfer Hydrogenation Coupled with Dynamic Kinetic Resolution in Water: Synthesis of <i>anti</i> -β-Hydroxy-α-amino Acid Derivatives. Organic Letters, 2012, 14, 6334-6337.                                    | 4.6      | 50        |
| 14 | A general enantioselective route to the chamigrene natural product family. Tetrahedron, 2010, 66,<br>4668-4686.                                                                                                            | 1.9      | 48        |
| 15 | Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells. Nature Chemical Biology, 2017, 13, 1102-1108.                                                                                               | 8.0      | 46        |
| 16 | Inhibitors of the Cysteine Synthase CysM with Antibacterial Potency against Dormant<br><i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2016, 59, 6848-6859.                                            | 6.4      | 45        |
| 17 | Enantioselective Synthesis of <i>anti</i> â€î²â€Hydroxyâ€î±â€Amido Esters by Asymmetric Transfer Hydrogenatic<br>in Emulsions. Chemistry - A European Journal, 2012, 18, 7219-7223.                                        | n<br>3.3 | 38        |
| 18 | Domino Carbopalladation arbonylation: Investigation of Substrate Scope. Advanced Synthesis and<br>Catalysis, 2012, 354, 205-216.                                                                                           | 4.3      | 38        |

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | FGFR4 phosphorylates MST1 to confer breast cancer cells resistance to MST1/2-dependent apoptosis.<br>Cell Death and Differentiation, 2019, 26, 2577-2593.                             | 11.2 | 38        |
| 20 | Domino Carbopalladationâ^'Carbonylation: Generating Quaternary Stereocenters while Controlling<br>β-Hydride Elimination. Organic Letters, 2010, 12, 3732-3735.                        | 4.6  | 37        |
| 21 | Discovery of a Small-Molecule Probe for V-ATPase Function. Journal of the American Chemical Society, 2015, 137, 5563-5568.                                                            | 13.7 | 36        |
| 22 | Perspective on CETSA Literature: Toward More Quantitative Data Interpretation. SLAS Discovery, 2020, 25, 118-126.                                                                     | 2.7  | 30        |
| 23 | Nanomedicine for improvement of dendritic cell-based cancer immunotherapy. International<br>Immunopharmacology, 2020, 83, 106446.                                                     | 3.8  | 30        |
| 24 | Early Perspective. Journal of Biomolecular Screening, 2016, 21, 1019-1033.                                                                                                            | 2.6  | 24        |
| 25 | Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in Pediatric Rhabdoid Tumors. Cell Reports, 2019, 28, 2331-2344.e8.                      | 6.4  | 24        |
| 26 | <i>In Situ</i> Target Engagement Studies in Adherent Cells. ACS Chemical Biology, 2018, 13, 942-950.                                                                                  | 3.4  | 23        |
| 27 | A chemical screen identifies trifluoperazine as an inhibitor of glioblastoma growth. Biochemical and<br>Biophysical Research Communications, 2017, 494, 477-483.                      | 2.1  | 22        |
| 28 | Addition of Azomethine Ylides to Aldehydes: Mechanistic Dichotomy of Differentially Substituted<br>αâ€Imino Esters. European Journal of Organic Chemistry, 2010, 2010, 3927-3933.     | 2.4  | 19        |
| 29 | Computational and Experimental Druggability Assessment of Human DNA Glycosylases. ACS Omega, 2019, 4, 11642-11656.                                                                    | 3.5  | 19        |
| 30 | Quantitative Interpretation of Intracellular Drug Binding and Kinetics Using the Cellular Thermal Shift Assay. Biochemistry, 2018, 57, 6715-6725.                                     | 2.5  | 16        |
| 31 | MTH1 Inhibitor TH1579 Induces Oxidative DNA Damage and Mitotic Arrest in Acute Myeloid Leukemia.<br>Cancer Research, 2021, 81, 5733-5744.                                             | 0.9  | 15        |
| 32 | Rhabdoid Tumors Are Sensitive to the Protein-Translation Inhibitor Homoharringtonine. Clinical<br>Cancer Research, 2020, 26, 4995-5006.                                               | 7.0  | 14        |
| 33 | Immediate Adaptation Analysis Implicates BCL6 as an EGFR-TKI Combination Therapy Target in NSCLC.<br>Molecular and Cellular Proteomics, 2020, 19, 928-943.                            | 3.8  | 9         |
| 34 | The transcriptomeâ€wide landscape of molecular subtypeâ€specific <scp>mRNA</scp> expression profiles<br>in acute myeloid leukemia. American Journal of Hematology, 2021, 96, 580-588. | 4.1  | 9         |
| 35 | PFKFB3 Inhibition Sensitizes DNA Crosslinking Chemotherapies by Suppressing Fanconi Anemia Repair.<br>Cancers, 2021, 13, 3604.                                                        | 3.7  | 6         |
| 36 | Reprint of: A chemical screen identifies trifluoperazine as an inhibitor of glioblastoma growth.<br>Biochemical and Biophysical Research Communications, 2018, 499, 136-142.          | 2.1  | 5         |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Using High Content Imaging to Quantify Target Engagement in Adherent Cells. Journal of Visualized Experiments, 2018, , .                                                                           | 0.3 | 2         |
| 38 | Computational Analyses Connect Small-Molecule Sensitivity to Cellular Features Using Large Panels<br>of Cancer Cell Lines. Methods in Molecular Biology, 2019, 1888, 233-254.                      | 0.9 | 1         |
| 39 | High-Throughput Functional Ex-Vivo Drug Testing and Multi-Omics Profiling in Patients with Acute<br>Myeloid Leukemia. Blood, 2019, 134, 4641-4641.                                                 | 1.4 | 1         |
| 40 | Total Synthesis of Dehaloperophoramidine. Strategies and Tactics in Organic Synthesis, 2017, 13, 217-242.                                                                                          | 0.1 | 0         |
| 41 | Abstract 2476: DiSCoVERing innovative therapies for rare tumors: Combining genetically accurate disease models with advanced in silico analysis to identify novel therapeutic targets. , 2016, , . |     | 0         |