Xinglong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1752330/publications.pdf

Version: 2024-02-01

83	13,787	48	79
papers	citations	h-index	g-index
83	83	83	21433
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Europium-Doped Cerium Oxide Nanoparticles for Microglial Amyloid Beta Clearance and Homeostasis. ACS Chemical Neuroscience, 2022, 13, 1232-1244.	3.5	16
2	Exosomes derived from differentiated human ADMSC with the Schwann cell phenotype modulate peripheral nerve-related cellular functions. Bioactive Materials, 2022, 14, 61-75.	15.6	26
3	Functionalized Allopurinols Targeting Amyloid-Binding Alcohol Dehydrogenase Rescue AÎ ² -Induced Mitochondrial Dysfunction. ACS Chemical Neuroscience, 2022, 13, 2176-2190.	3.5	8
4	Overexpression of ferroptosis defense enzyme Gpx4 retards motor neuron disease of SOD1G93A mice. Scientific Reports, 2021, 11, 12890.	3. 3	44
5	Humanized Mice for Infectious and Neurodegenerative disorders. Retrovirology, 2021, 18, 13.	2.0	20
6	Translational regulation in the brain by TDP-43 phase separation. Journal of Cell Biology, 2021, 220, .	5 . 2	14
7	Mitochondrial Fusion Suppresses Tau Pathology-Induced Neurodegeneration and Cognitive Decline. Journal of Alzheimer's Disease, 2021, 84, 1057-1069.	2.6	6
8	CD4+ effector T cells accelerate Alzheimer's disease in mice. Journal of Neuroinflammation, 2021, 18, 272.	7.2	48
9	TDP-43 inhibitory peptide alleviates neurodegeneration and memory loss in an APP transgenic mouse model for Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165580.	3.8	17
10	Cytoplasmic mislocalization and mitochondrial colocalization of TDP-43 are common features between normal aged and young mice. Experimental Biology and Medicine, 2020, 245, 1584-1593.	2.4	7
11	Neuronal Mitochondria Modulation of LPS-Induced Neuroinflammation. Journal of Neuroscience, 2020, 40, 1756-1765.	3.6	63
12	FAM222A encodes a protein which accumulates in plaques in Alzheimer's disease. Nature Communications, 2020, 11, 411.	12.8	16
13	TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration. Molecular and Cellular Neurosciences, 2019, 100, 103396.	2,2	62
14	Inhibition of Calpain Protects Against Tauopathy in Transgenic P301S Tau Mice. Journal of Alzheimer's Disease, 2019, 69, 1077-1087.	2.6	9
15	Association between TDP-43 and mitochondria in inclusion body myositis. Laboratory Investigation, 2019, 99, 1041-1048.	3.7	18
16	Pathomechanisms of TDPâ€43 in neurodegeneration. Journal of Neurochemistry, 2018, 146, 7-20.	3.9	157
17	Rab10 Phosphorylation is a Prominent Pathological Feature in Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 63, 157-165.	2.6	29
18	Mitofusin 2 Regulates Axonal Transport of Calpastatin to Prevent Neuromuscular Synaptic Elimination in Skeletal Muscles. Cell Metabolism, 2018, 28, 400-414.e8.	16.2	39

#	Article	lF	CITATIONS
19	Motor-Coordinative and Cognitive Dysfunction Caused by Mutant TDP-43 Could Be Reversed by Inhibiting Its Mitochondrial Localization. Molecular Therapy, 2017, 25, 127-139.	8.2	58
20	TDP-43 suppresses tau expression via promoting its mRNA instability. Nucleic Acids Research, 2017, 45, 6177-6193.	14.5	45
21	Transactive response DNA-binding protein 43 (TDP-43) regulates alternative splicing of tau exon 10: Implications for the pathogenesis of tauopathies. Journal of Biological Chemistry, 2017, 292, 10600-10612.	3.4	63
22	Deletion of Nampt in Projection Neurons of Adult Mice Leads to Motor Dysfunction, Neurodegeneration, and Death. Cell Reports, 2017, 20, 2184-2200.	6.4	63
23	Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases. Antioxidants, 2017, 6, 25.	5.1	171
24	TMEM230 Accumulation in Granulovacuolar Degeneration Bodies and Dystrophic Neurites of Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 58, 1027-1033.	2.6	9
25	Estrogen receptor-α is localized to neurofibrillary tangles in Alzheimer's disease. Scientific Reports, 2016, 6, 20352.	3.3	45
26	The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nature Medicine, 2016, 22, 869-878.	30.7	299
27	Luteinizing hormone downregulation but not estrogen replacement improves ovariectomy-associated cognition and spine density loss independently of treatment onset timing. Hormones and Behavior, 2016, 78, 60-66.	2.1	26
28	Parkinson's disease–associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nature Medicine, 2016, 22, 54-63.	30.7	265
29	Mitochondrial dynamic abnormalities in amyotrophic lateral sclerosis. Translational Neurodegeneration, 2015, 4, 14.	8.0	51
30	Miro1 deficiency in amyotrophic lateral sclerosis. Frontiers in Aging Neuroscience, 2015, 7, 100.	3.4	55
31	MFN2 Couples Glutamate Excitotoxicity and Mitochondrial Dysfunction in Motor Neurons*. Journal of Biological Chemistry, 2015, 290, 168-182.	3.4	90
32	Posttranslational modifications of \hat{l}_{\pm} -tubulin in alzheimer disease. Translational Neurodegeneration, 2015, 4, 9.	8.0	88
33	Oxidative Damage is Correlated with Mitochondrial Autophagy. FASEB Journal, 2015, 29, 613.1.	0.5	0
34	Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1240-1247.	3.8	982
35	lonizing radiation causes increased tau phosphorylation in primary neurons. Journal of Neurochemistry, 2014, 131, 86-93.	3.9	18
36	Neuronal failure in Alzheimer's disease: a view through the oxidative stress looking-glass. Neuroscience Bulletin, 2014, 30, 243-252.	2.9	95

3

#	Article	IF	CITATIONS
37	The neuroprotective effect of human uncoupling protein 2 (hUCP2) requires cAMP-dependent protein kinase in a toxin model of Parkinson's disease. Neurobiology of Disease, 2014, 69, 180-191.	4.4	27
38	Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radical Biology and Medicine, 2013, 62, 90-101.	2.9	565
39	The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Human Molecular Genetics, 2013, 22, 4706-4719.	2.9	251
40	LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Human Molecular Genetics, 2012, 21, 1931-1944.	2.9	356
41	Cellular prion protein is essential for oligomeric amyloid-Â-induced neuronal cell death. Human Molecular Genetics, 2012, 21, 1138-1144.	2.9	105
42	Molecular neuropathogenesis of Alzheimer's disease: an interaction model stressing the central role of oxidative stress. Future Neurology, 2012, 7, 287-305.	0.5	13
43	Parkinson's diseaseâ€associated DJâ€1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. Journal of Neurochemistry, 2012, 121, 830-839.	3.9	174
44	Activation of the extracellular signalâ€regulated kinase pathway contributes to the behavioral deficit of fragile xâ€syndrome. Journal of Neurochemistry, 2012, 121, 672-679.	3.9	78
45	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
46	Early Induction of Oxidative Stress in Mouse Model of Alzheimer Disease with Reduced Mitochondrial Superoxide Dismutase Activity. PLoS ONE, 2012, 7, e28033.	2.5	54
47	Abnormal Mitochondrial Dynamics in the Pathogenesis of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 33, S253-S262.	2.6	166
48	Bivalent Ligand Containing Curcumin and Cholesterol as a Fluorescence Probe for Aβ Plaques in Alzheimer's Disease. ACS Chemical Neuroscience, 2012, 3, 141-146.	3.5	70
49	Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. Journal of Neurochemistry, 2012, 120, 419-429.	3.9	422
50	RLipoic Acid as a Potent Agent of Mitochondrial Protectionin Alzheimer's Disease. Oxidative Stress and Disease, 2012, , 455-467.	0.3	0
51	Frontiers in Alzheimer's disease therapeutics. Therapeutic Advances in Chronic Disease, 2011, 2, 9-23.	2.5	26
52	The Mitochondrial Dynamics of Alzheimers Disease and Parkinsons Disease Offer Important Opportunities for Therapeutic Intervention. Current Pharmaceutical Design, 2011, 17, 3374-3380.	1.9	30
53	DLP1â€dependent mitochondrial fragmentation mediates 1â€methylâ€4â€phenylpyridinium toxicity in neurons: implications for Parkinson's disease. Aging Cell, 2011, 10, 807-823.	6.7	113
54	Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer disease. Cellular and Molecular Biology Letters, 2011, 16, 359-72.	7.0	17

#	Article	IF	CITATIONS
55	Amyloid- \hat{l}^2 42 Interacts Mainly with Insoluble Prion Protein in the Alzheimer Brain. Journal of Biological Chemistry, 2011, 286, 15095-15105.	3.4	75
56	A novel origin for granulovacuolar degeneration in aging and Alzheimer's disease: parallels to stress granules. Laboratory Investigation, 2011, 91, 1777-1786.	3.7	44
57	Increased Iron and Free Radical Generation in Preclinical Alzheimer Disease and Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2010, 19, 363-372.	2.6	357
58	Abnormal Mitochondrial Dynamics—A Novel Therapeutic Target for Alzheimer's Disease?. Molecular Neurobiology, 2010, 41, 87-96.	4.0	75
59	Mitochondria and Neurodegenerative Diseases. Journal of Alzheimer's Disease, 2010, 20, S253-S253.	2.6	2
60	A Synergistic Dysfunction of Mitochondrial Fission/Fusion Dynamics and Mitophagy in Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 20, S401-S412.	2.6	141
61	Oxidative Stress and Neurodegeneration: An Inevitable Consequence of Aging? Implications for Therapy. , 2010, , 305-323.		5
62	elF2α Phosphorylation Tips the Balance to Apoptosis during Osmotic Stress. Journal of Biological Chemistry, 2010, 285, 17098-17111.	3.4	83
63	Amyloid-Î ² -Derived Diffusible Ligands Cause Impaired Axonal Transport of Mitochondria in Neurons. Neurodegenerative Diseases, 2010, 7, 56-59.	1.4	120
64	Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neuroscience Letters, 2010, 468, 267-271.	2.1	141
65	Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 135-142.	3.8	229
66	Mitochondria: A therapeutic target in neurodegeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 212-220.	3.8	244
67	Oxidative stress in Alzheimer disease: A possibility for prevention. Neuropharmacology, 2010, 59, 290-294.	4.1	431
68	Mitochondrial Dynamics in Alzheimer's Disease. Drugs and Aging, 2010, 27, 181-192.	2.7	86
69	Alzheimer's disease: diverse aspects of mitochondrial malfunctioning. International Journal of Clinical and Experimental Pathology, 2010, 3, 570-81.	0.5	75
70	Impaired Balance of Mitochondrial Fission and Fusion in Alzheimer's Disease. Journal of Neuroscience, 2009, 29, 9090-9103.	3.6	1,003
71	Mutant Presenilin 1 Increases the Expression and Activity of BACE1. Journal of Biological Chemistry, 2009, 284, 9027-9038.	3.4	42
72	Ectopic localization of FOXO3a protein in Lewy bodies in Lewy body dementia and Parkinson's disease. Molecular Neurodegeneration, 2009, 4, 32.	10.8	34

#	Article	IF	CITATIONS
73	The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. Journal of Neurochemistry, 2009, 109, 153-159.	3.9	245
74	Mitochondrial Drugs for Alzheimer Disease. Pharmaceuticals, 2009, 2, 287-298.	3.8	15
75	Mitochondria Dynamics Abnormalities in Alzheimer Disease. FASEB Journal, 2009, 23, 356.1.	0.5	0
76	The Roc domain of leucineâ€rich repeat kinase 2 is sufficient for interaction with microtubules. Journal of Neuroscience Research, 2008, 86, 1711-1720.	2.9	155
77	Physiological regulation of tau phosphorylation during hibernation. Journal of Neurochemistry, 2008, 105, 2098-2108.	3.9	79
78	Dynamin-Like Protein 1 Reduction Underlies Mitochondrial Morphology and Distribution Abnormalities in Fibroblasts from Sporadic Alzheimer's Disease Patients. American Journal of Pathology, 2008, 173, 470-482.	3.8	308
79	Amyloid- \hat{l}^2 overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19318-19323.	7.1	734
80	Increased Autophagic Degradation of Mitochondria in Alzheimer Disease. Autophagy, 2007, 3, 614-615.	9.1	147
81	Autophagocytosis of Mitochondria Is Prominent in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2007, 66, 525-532.	1.7	138
82	c-Jun phosphorylation in Alzheimer disease. Journal of Neuroscience Research, 2007, 85, 1668-1673.	2.9	75
83	Insights into amyloid- \hat{l}^2 -induced mitochondrial dysfunction in Alzheimer disease. Free Radical Biology and Medicine, 2007, 43, 1569-1573.	2.9	93