
Xinglong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1752330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	Impaired Balance of Mitochondrial Fission and Fusion in Alzheimer's Disease. Journal of Neuroscience, 2009, 29, 9090-9103.	3.6	1,003
3	Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1240-1247.	3.8	982
4	Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19318-19323.	7.1	734
5	Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radical Biology and Medicine, 2013, 62, 90-101.	2.9	565
6	Oxidative stress in Alzheimer disease: A possibility for prevention. Neuropharmacology, 2010, 59, 290-294.	4.1	431
7	Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. Journal of Neurochemistry, 2012, 120, 419-429.	3.9	422
8	Increased Iron and Free Radical Generation in Preclinical Alzheimer Disease and Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2010, 19, 363-372.	2.6	357
9	LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Human Molecular Genetics, 2012, 21, 1931-1944.	2.9	356
10	Dynamin-Like Protein 1 Reduction Underlies Mitochondrial Morphology and Distribution Abnormalities in Fibroblasts from Sporadic Alzheimer's Disease Patients. American Journal of Pathology, 2008, 173, 470-482.	3.8	308
11	The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nature Medicine, 2016, 22, 869-878.	30.7	299
12	Parkinson's disease–associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nature Medicine, 2016, 22, 54-63.	30.7	265
13	The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Human Molecular Genetics, 2013, 22, 4706-4719.	2.9	251
14	The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. Journal of Neurochemistry, 2009, 109, 153-159.	3.9	245
15	Mitochondria: A therapeutic target in neurodegeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 212-220.	3.8	244
16	Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 135-142.	3.8	229
17	Parkinson's diseaseâ€associated DJâ€1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. Journal of Neurochemistry, 2012, 121, 830-839.	3.9	174
18	Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases. Antioxidants, 2017, 6, 25.	5.1	171

#	Article	IF	CITATIONS
19	Abnormal Mitochondrial Dynamics in the Pathogenesis of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 33, S253-S262.	2.6	166
20	Pathomechanisms of TDPâ€43 in neurodegeneration. Journal of Neurochemistry, 2018, 146, 7-20.	3.9	157
21	The Roc domain of leucineâ€rich repeat kinase 2 is sufficient for interaction with microtubules. Journal of Neuroscience Research, 2008, 86, 1711-1720.	2.9	155
22	Increased Autophagic Degradation of Mitochondria in Alzheimer Disease. Autophagy, 2007, 3, 614-615.	9.1	147
23	A Synergistic Dysfunction of Mitochondrial Fission/Fusion Dynamics and Mitophagy in Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 20, S401-S412.	2.6	141
24	Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neuroscience Letters, 2010, 468, 267-271.	2.1	141
25	Autophagocytosis of Mitochondria Is Prominent in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2007, 66, 525-532.	1.7	138
26	Amyloid-β-Derived Diffusible Ligands Cause Impaired Axonal Transport of Mitochondria in Neurons. Neurodegenerative Diseases, 2010, 7, 56-59.	1.4	120
27	DLP1â€dependent mitochondrial fragmentation mediates 1â€methylâ€4â€phenylpyridinium toxicity in neurons: implications for Parkinson's disease. Aging Cell, 2011, 10, 807-823.	6.7	113
28	Cellular prion protein is essential for oligomeric amyloid-Â-induced neuronal cell death. Human Molecular Genetics, 2012, 21, 1138-1144.	2.9	105
29	Neuronal failure in Alzheimer's disease: a view through the oxidative stress looking-glass. Neuroscience Bulletin, 2014, 30, 243-252.	2.9	95
30	Insights into amyloid-β-induced mitochondrial dysfunction in Alzheimer disease. Free Radical Biology and Medicine, 2007, 43, 1569-1573.	2.9	93
31	MFN2 Couples Glutamate Excitotoxicity and Mitochondrial Dysfunction in Motor Neurons*. Journal of Biological Chemistry, 2015, 290, 168-182.	3.4	90
32	Posttranslational modifications of α-tubulin in alzheimer disease. Translational Neurodegeneration, 2015, 4, 9.	8.0	88
33	Mitochondrial Dynamics in Alzheimer's Disease. Drugs and Aging, 2010, 27, 181-192.	2.7	86
34	eIF2α Phosphorylation Tips the Balance to Apoptosis during Osmotic Stress. Journal of Biological Chemistry, 2010, 285, 17098-17111.	3.4	83
35	Physiological regulation of tau phosphorylation during hibernation. Journal of Neurochemistry, 2008, 105, 2098-2108.	3.9	79
36	Activation of the extracellular signalâ€regulated kinase pathway contributes to the behavioral deficit of fragile xâ€syndrome. Journal of Neurochemistry, 2012, 121, 672-679.	3.9	78

#	Article	IF	CITATIONS
37	c-Jun phosphorylation in Alzheimer disease. Journal of Neuroscience Research, 2007, 85, 1668-1673.	2.9	75
38	Abnormal Mitochondrial Dynamics—A Novel Therapeutic Target for Alzheimer's Disease?. Molecular Neurobiology, 2010, 41, 87-96.	4.0	75
39	Amyloid-β42 Interacts Mainly with Insoluble Prion Protein in the Alzheimer Brain. Journal of Biological Chemistry, 2011, 286, 15095-15105.	3.4	75
40	Alzheimer's disease: diverse aspects of mitochondrial malfunctioning. International Journal of Clinical and Experimental Pathology, 2010, 3, 570-81.	0.5	75
41	Bivalent Ligand Containing Curcumin and Cholesterol as a Fluorescence Probe for Aβ Plaques in Alzheimer〙s Disease. ACS Chemical Neuroscience, 2012, 3, 141-146.	3.5	70
42	Transactive response DNA-binding protein 43 (TDP-43) regulates alternative splicing of tau exon 10: Implications for the pathogenesis of tauopathies. Journal of Biological Chemistry, 2017, 292, 10600-10612.	3.4	63
43	Deletion of Nampt in Projection Neurons of Adult Mice Leads to Motor Dysfunction, Neurodegeneration, and Death. Cell Reports, 2017, 20, 2184-2200.	6.4	63
44	Neuronal Mitochondria Modulation of LPS-Induced Neuroinflammation. Journal of Neuroscience, 2020, 40, 1756-1765.	3.6	63
45	TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration. Molecular and Cellular Neurosciences, 2019, 100, 103396.	2.2	62
46	Motor-Coordinative and Cognitive Dysfunction Caused by Mutant TDP-43 Could Be Reversed by Inhibiting Its Mitochondrial Localization. Molecular Therapy, 2017, 25, 127-139.	8.2	58
47	Miro1 deficiency in amyotrophic lateral sclerosis. Frontiers in Aging Neuroscience, 2015, 7, 100.	3.4	55
48	Early Induction of Oxidative Stress in Mouse Model of Alzheimer Disease with Reduced Mitochondrial Superoxide Dismutase Activity. PLoS ONE, 2012, 7, e28033.	2.5	54
49	Mitochondrial dynamic abnormalities in amyotrophic lateral sclerosis. Translational Neurodegeneration, 2015, 4, 14.	8.0	51
50	CD4+ effector T cells accelerate Alzheimer's disease in mice. Journal of Neuroinflammation, 2021, 18, 272.	7.2	48
51	Estrogen receptor-α is localized to neurofibrillary tangles in Alzheimer's disease. Scientific Reports, 2016, 6, 20352.	3.3	45
52	TDP-43 suppresses tau expression via promoting its mRNA instability. Nucleic Acids Research, 2017, 45, 6177-6193.	14.5	45
53	A novel origin for granulovacuolar degeneration in aging and Alzheimer's disease: parallels to stress granules. Laboratory Investigation, 2011, 91, 1777-1786.	3.7	44
54	Overexpression of ferroptosis defense enzyme Gpx4 retards motor neuron disease of SOD1G93A mice. Scientific Reports, 2021, 11, 12890.	3.3	44

#	Article	IF	CITATIONS
55	Mutant Presenilin 1 Increases the Expression and Activity of BACE1. Journal of Biological Chemistry, 2009, 284, 9027-9038.	3.4	42
56	Mitofusin 2 Regulates Axonal Transport of Calpastatin to Prevent Neuromuscular Synaptic Elimination in Skeletal Muscles. Cell Metabolism, 2018, 28, 400-414.e8.	16.2	39
57	Ectopic localization of FOXO3a protein in Lewy bodies in Lewy body dementia and Parkinson's disease. Molecular Neurodegeneration, 2009, 4, 32.	10.8	34
58	The Mitochondrial Dynamics of Alzheimers Disease and Parkinsons Disease Offer Important Opportunities for Therapeutic Intervention. Current Pharmaceutical Design, 2011, 17, 3374-3380.	1.9	30
59	Rab10 Phosphorylation is a Prominent Pathological Feature in Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 63, 157-165.	2.6	29
60	The neuroprotective effect of human uncoupling protein 2 (hUCP2) requires cAMP-dependent protein kinase in a toxin model of Parkinson's disease. Neurobiology of Disease, 2014, 69, 180-191.	4.4	27
61	Frontiers in Alzheimer's disease therapeutics. Therapeutic Advances in Chronic Disease, 2011, 2, 9-23.	2.5	26
62	Luteinizing hormone downregulation but not estrogen replacement improves ovariectomy-associated cognition and spine density loss independently of treatment onset timing. Hormones and Behavior, 2016, 78, 60-66.	2.1	26
63	Exosomes derived from differentiated human ADMSC with the Schwann cell phenotype modulate peripheral nerve-related cellular functions. Bioactive Materials, 2022, 14, 61-75.	15.6	26
64	Humanized Mice for Infectious and Neurodegenerative disorders. Retrovirology, 2021, 18, 13.	2.0	20
65	lonizing radiation causes increased tau phosphorylation in primary neurons. Journal of Neurochemistry, 2014, 131, 86-93.	3.9	18
66	Association between TDP-43 and mitochondria in inclusion body myositis. Laboratory Investigation, 2019, 99, 1041-1048.	3.7	18
67	Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer disease. Cellular and Molecular Biology Letters, 2011, 16, 359-72.	7.0	17
68	TDP-43 inhibitory peptide alleviates neurodegeneration and memory loss in an APP transgenic mouse model for Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165580.	3.8	17
69	FAM222A encodes a protein which accumulates in plaques in Alzheimer's disease. Nature Communications, 2020, 11, 411.	12.8	16
70	Europium-Doped Cerium Oxide Nanoparticles for Microglial Amyloid Beta Clearance and Homeostasis. ACS Chemical Neuroscience, 2022, 13, 1232-1244.	3.5	16
71	Mitochondrial Drugs for Alzheimer Disease. Pharmaceuticals, 2009, 2, 287-298.	3.8	15
72	Translational regulation in the brain by TDP-43 phase separation. Journal of Cell Biology, 2021, 220, .	5.2	14

#	Article	IF	CITATIONS
73	Molecular neuropathogenesis of Alzheimer's disease: an interaction model stressing the central role of oxidative stress. Future Neurology, 2012, 7, 287-305.	0.5	13
74	TMEM230 Accumulation in Granulovacuolar Degeneration Bodies and Dystrophic Neurites of Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 58, 1027-1033.	2.6	9
75	Inhibition of Calpain Protects Against Tauopathy in Transgenic P301S Tau Mice. Journal of Alzheimer's Disease, 2019, 69, 1077-1087.	2.6	9
76	Functionalized Allopurinols Targeting Amyloid-Binding Alcohol Dehydrogenase Rescue Aβ-Induced Mitochondrial Dysfunction. ACS Chemical Neuroscience, 2022, 13, 2176-2190.	3.5	8
77	Cytoplasmic mislocalization and mitochondrial colocalization of TDP-43 are common features between normal aged and young mice. Experimental Biology and Medicine, 2020, 245, 1584-1593.	2.4	7
78	Mitochondrial Fusion Suppresses Tau Pathology-Induced Neurodegeneration and Cognitive Decline. Journal of Alzheimer's Disease, 2021, 84, 1057-1069.	2.6	6
79	Oxidative Stress and Neurodegeneration: An Inevitable Consequence of Aging? Implications for Therapy. , 2010, , 305-323.		5
80	Mitochondria and Neurodegenerative Diseases. Journal of Alzheimer's Disease, 2010, 20, S253-S253.	2.6	2
81	Mitochondria Dynamics Abnormalities in Alzheimer Disease. FASEB Journal, 2009, 23, 356.1.	0.5	0
82	RLipoic Acid as a Potent Agent of Mitochondrial Protectionin Alzheimer's Disease. Oxidative Stress and Disease, 2012, , 455-467.	0.3	0
83	Oxidative Damage is Correlated with Mitochondrial Autophagy. FASEB Journal, 2015, 29, 613.1.	0.5	0