Emanuela Noris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1752254/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Strategies for antiviral resistance in transgenic plants. Molecular Plant Pathology, 2008, 9, 73-83.	4.2	226
2	Amino Acids in the Capsid Protein of Tomato Yellow Leaf Curl Virus That Are Crucial for Systemic Infection, Particle Formation, and Insect Transmission. Journal of Virology, 1998, 72, 10050-10057.	3.4	159
3	Resistance to Tomato Yellow Leaf Curl Geminivirus inNicotiana benthamianaPlants Transformed with a Truncated Viral C1 Gene. Virology, 1996, 224, 130-138.	2.4	132
4	Genetic Analysis of the Monopartite Tomato Yellow Leaf Curl Geminivirus: Roles of V1, V2, and C2 ORFs in Viral Pathogenesis. Virology, 1997, 228, 132-140.	2.4	118
5	Watermelon chlorotic stunt virus from the Sudan and Iran: Sequence Comparisons and Identification of a Whitefly-Transmission Determinant. Phytopathology, 2000, 90, 629-635.	2.2	112
6	Typing of Tomato Yellow Leaf Curl Viruses in Europe. European Journal of Plant Pathology, 2000, 106, 179-186.	1.7	105
7	Real-time PCR for the quantitation of Tomato yellow leaf curl Sardinia virus in tomato plants and in Bemisia tabaci. Journal of Virological Methods, 2008, 147, 282-289.	2.1	101
8	Tomato Yellow Leaf Curl Sardinia Virus Rep-Derived Resistance to Homologous and Heterologous Geminiviruses Occurs by Different Mechanisms and Is Overcome if Virus-Mediated Transgene Silencing Is Activated. Journal of Virology, 2003, 77, 6785-6798.	3.4	97
9	Natural recombination between Tomato yellow leaf curl virus-Is and Tomato leaf curl virus. Journal of General Virology, 2000, 81, 2797-2801.	2.9	97
10	High similarity among the tomato yellow leaf curl virus isolates from the West Mediterranean Basin: the nucleotide sequence of an infectious clone from Spain. Archives of Virology, 1994, 135, 165-170.	2.1	96
11	A Review of the Most Common and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin. Agronomy, 2021, 11, 2188.	3.0	94
12	High Expression of Truncated Viral Rep Protein Confers Resistance to Tomato Yellow Leaf Curl Virus in Transgenic Tomato Plants. Molecular Plant-Microbe Interactions, 1997, 10, 571-579.	2.6	73
13	Efficient production of chimeric Human papillomavirus 16 L1 protein bearing the M2e influenza epitope in Nicotiana benthamiana plants. BMC Biotechnology, 2011, 11, 106.	3.3	70
14	Virion Stability Is Important for the Circulative Transmission of <i>Tomato Yellow Leaf Curl Sardinia Virus</i> by <i>Bemisia tabaci</i> , but Virion Access to Salivary Glands Does Not Guarantee Transmissibility. Journal of Virology, 2009, 83, 5784-5795.	3.4	66
15	The Use of Transient Expression Systems for the Rapid Production of Virus-like Particles in Plants. Current Pharmaceutical Design, 2013, 19, 5564-5573.	1.9	62
16	Nondestructive Raman Spectroscopy as a Tool for Early Detection and Discrimination of the Infection of Tomato Plants by Two Economically Important Viruses. Analytical Chemistry, 2019, 91, 9025-9031.	6.5	57
17	Cell Cycle Arrest by Human Cytomegalovirus 86-kDa IE2 Protein Resembles Premature Senescence. Journal of Virology, 2002, 76, 12135-12148.	3.4	56
18	Two new natural begomovirus recombinants associated with the tomato yellow leaf curl disease co-exist with parental viruses in tomato epidemics in Italy. Virus Research, 2009, 143, 15-23.	2.2	56

EMANUELA NORIS

#	Article	IF	CITATIONS
19	Tomato yellow leaf curl Sardinia virus can overcome transgene-mediated RNA silencing of two essential viral genes. Journal of General Virology, 2004, 85, 1745-1749.	2.9	53
20	In planta production of a candidate vaccine against bovine papillomavirus type 1. Planta, 2012, 236, 1305-1313.	3.2	50
21	DNA-Binding Activity of the C2 Protein of Tomato Yellow Leaf Curl Geminivirus. Virology, 1996, 217, 607-612.	2.4	46
22	Potentiality of Methylation-sensitive Amplification Polymorphism (MSAP) in Identifying Genes Involved in Tomato Response to Tomato Yellow Leaf Curl Sardinia Virus. Plant Molecular Biology Reporter, 2008, 26, 156-173.	1.8	46
23	Transgenically Expressed T-Rep of Tomato Yellow Leaf Curl Sardinia Virus Acts as a trans -Dominant-Negative Mutant, Inhibiting Viral Transcription and Replication. Journal of Virology, 2001, 75, 10573-10581.	3.4	44
24	Comparative analysis of recombinant <i>Human Papillomavirus</i> 8â€fL1 production in plants by a variety of expression systems and purification methods. Plant Biotechnology Journal, 2012, 10, 410-421.	8.3	43
25	Analysis of small RNAs derived from tomato yellow leaf curl Sardinia virus reveals a cross reaction between the major viral hotspot and the plant host genome. Virus Research, 2013, 178, 287-296.	2.2	39
26	Improved detection of citrus psorosis virus using polyclonal and monoclonal antibodies. Plant Pathology, 1999, 48, 735-741.	2.4	34
27	Pyramiding <i>Ty</i> - <i>1</i> /i>/ <i>Ty</i> - <i>3</i> and <i>Ty</i> - <i>2</i> in tomato hybrids dramatically inhibits symptom expression and accumulation of tomato yellow leaf curl disease inducing viruses. Archives of Phytopathology and Plant Protection, 2017, 50, 213-227.	1.3	33
28	Indian citrus ringspot virus: a proposed new species with some affinities to potex-, carla-, fovea- and allexiviruses. Archives of Virology, 2000, 145, 1895-1908.	2.1	29
29	A nuclear-replicating viroid antagonizes infectivity and accumulation of a geminivirus by upregulating methylation-related genes and inducing hypermethylation of viral DNA. Scientific Reports, 2016, 6, 35101.	3.3	29
30	The Induction of an Effective dsRNA-Mediated Resistance Against Tomato Spotted Wilt Virus by Exogenous Application of Double-Stranded RNA Largely Depends on the Selection of the Viral RNA Target Region. Frontiers in Plant Science, 2020, 11, 533338.	3.6	28
31	A human papillomavirus 8 E7 protein produced in plants is able to trigger the mouse immune system and delay the development of skin lesions. Archives of Virology, 2011, 156, 587-595.	2.1	26
32	The C2 protein of tomato yellow leaf curl Sardinia virus acts as a pathogenicity determinant and a 16-amino acid domain is responsible for inducing a hypersensitive response in plants. Virus Research, 2016, 215, 12-19.	2.2	24
33	On the alleged origin of geminiviruses from extrachromosomal DNAs of phytoplasmas. BMC Evolutionary Biology, 2011, 11, 185.	3.2	19
34	Virus-mediated export of chromosomal DNA in plants. Nature Communications, 2018, 9, 5308.	12.8	19
35	Deep Sequencing Data and Infectivity Assays Indicate that Chickpea Chlorotic Dwarf Virus is the Etiological Agent of the "Hard Fruit Syndrome―of Watermelon. Viruses, 2017, 9, 311.	3.3	18
36	The interferon-inducible gene, Ifi204, acquires malignant transformation capability upon mutation at the Rb-binding sites. FEBS Letters, 2002, 515, 51-57.	2.8	17

EMANUELA NORIS

#	Article	IF	CITATIONS
37	Plant Molecular Farming as a Strategy Against COVID-19 – The Italian Perspective. Frontiers in Plant Science, 2020, 11, 609910.	3.6	15
38	Using non-radioactive probes on plants: a few examples. , 1998, 13, 295-301.		14
39	Real-Time PCR Protocols for the Quantification of the Begomovirus Tomato Yellow Leaf Curl Sardinia Virus in Tomato Plants and in Its Insect Vector. Methods in Molecular Biology, 2015, 1236, 61-72.	0.9	13
40	The rat ErbB2 tyrosine kinase receptor produced in plants is immunogenic in mice and confers protective immunity against ErbB2 ⁺ mammary cancer. Plant Biotechnology Journal, 2016, 14, 153-159.	8.3	12
41	Advances in diagnosing tomato yellow leaf curl geminivirus infection. Molecular Biotechnology, 1994, 2, 219-226.	2.4	11
42	Development of a Real-Time Loop-Mediated Isothermal Amplification Assay for the Rapid Detection of Olea Europaea Geminivirus. Plants, 2022, 11, 660.	3.5	11
43	An RGC sequence in the replication-associated protein (Rep) of Tomato yellow leaf curl Sardinia virus is involved in transcriptional repression and severely impacts resistance in Rep-expressing plants. Journal of General Virology, 2011, 92, 204-209.	2.9	10
44	RNA viruses and their silencing suppressors boost Abutilon mosaic virus, but not the Old World Tomato yellow leaf curl Sardinia virus. Virus Research, 2011, 161, 170-180.	2.2	9
45	In silico prediction of miRNAs targeting ToLCV and their regulation in susceptible and resistant tomato plants. Australasian Plant Pathology, 2017, 46, 379-386.	1.0	9
46	Survey of five major grapevine viruses infecting Blatina and Žilavka cultivars in Bosnia and Herzegovina. PLoS ONE, 2021, 16, e0245959.	2.5	9
47	The Mouse Interferon-Inducible Gene Ifi204 Product Interacts with the Tpr Protein, a Component of the Nuclear Pore Complex. Journal of Interferon and Cytokine Research, 2002, 22, 1113-1121.	1.2	8
48	No Evidence for Seed Transmission of Tomato Yellow Leaf Curl Sardinia Virus in Tomato. Cells, 2021, 10, 1673.	4.1	8
49	Detection methods for TYLCV and TYLCSV. , 2007, , 241-249.		7
50	Chickpea chlorotic dwarf virus infecting tomato crop in Tunisia. European Journal of Plant Pathology, 2019, 154, 1159-1164.	1.7	5
51	Engineering partial resistance to cucumber mosaic virus in tobacco using intrabodies specific for the viral polymerase. Phytochemistry, 2019, 162, 99-108.	2.9	3
52	Raman Spectroscopy Applications in Grapevine: Metabolic Analysis of Plants Infected by Two Different Viruses. Frontiers in Plant Science, 0, 13, .	3.6	3
53	In-Field LAMP Detection of Flavescence Dorée Phytoplasma in Crude Extracts of the Scaphoideus titanus Vector. Agronomy, 2022, 12, 1645.	3.0	3
54	Cloning and Expression Analysis of Human Amelogenin in Nicotiana benthamiana Plants by Means of a Transient Expression System. Molecular Biotechnology, 2017, 59, 425-434.	2.4	2

EMANUELA NORIS

#	Article	IF	CITATIONS
55	Host-induced gene silencing and spray-induced gene silencing for crop protection against viruses , 2021, , 72-85.		2
56	In planta produced virus-like particles as candidate vaccines. , 2015, , 73-85.		1
57	Self-Assembling Plant-Derived Vaccines Against Papillomaviruses. Methods in Molecular Biology, 2018, 1776, 85-95.	0.9	1
58	Phylogenetic Marker Selection and Protein Sequence Analysis of the ORF5 Gene Product of Grapevine Virus A. Plants, 2022, 11, 1118.	3.5	1
59	Resistance to Tomato Yellow Leaf Curl Geminivirus inNicotiana benthamianaPlants Transformed with a Truncated Viral C1 Gene. Virology, 1997, 227, 519.	2.4	0
60	Role of methylation during geminivirus infection. , 2020, , 291-305.		0
61	Host-induced gene silencing and spray-induced gene silencing for crop protection against viruses , 2021, , 72-85.		0