Stephen B Gruber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1752201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Associations Between Glycemic Traits and Colorectal Cancer: A Mendelian Randomization Analysis. Journal of the National Cancer Institute, 2022, 114, 740-752.	6.3	35
2	Risk Stratification for Early-Onset Colorectal Cancer Using a Combination of Genetic and Environmental Risk Scores: An International Multi-Center Study. Journal of the National Cancer Institute, 2022, , .	6.3	15
3	Large-scale Integrated Analysis of Genetics and Metabolomic Data Reveals Potential Links Between Lipids and Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1216-1226.	2.5	3
4	Beyond GWAS of Colorectal Cancer: Evidence of Interaction with Alcohol Consumption and Putative Causal Variant for the 10q24.2 Region. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1077-1089.	2.5	6
5	OUP accepted manuscript. Journal of the National Cancer Institute, 2022, , .	6.3	0
6	Statistical methods for Mendelian models with multiple genes and cancers. Genetic Epidemiology, 2022, 46, 395-414.	1.3	3
7	Comprehensive genomic profiling to identify gene alterations in DNA repair pathway across solid tumors Journal of Clinical Oncology, 2022, 40, 3124-3124.	1.6	0
8	Association of Body Mass Index With Colorectal Cancer Risk by Genome-Wide Variants. Journal of the National Cancer Institute, 2021, 113, 38-47.	6.3	14
9	Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects. Gastroenterology, 2021, 160, 1164-1178.e6.	1.3	36
10	Genetically predicted circulating concentrations of micronutrients and risk of colorectal cancer among individuals of European descent: a Mendelian randomization study. American Journal of Clinical Nutrition, 2021, 113, 1490-1502.	4.7	27
11	Tumor immune infiltration estimated from gene expression profiles predicts colorectal cancer relapse. Oncolmmunology, 2021, 10, 1862529.	4.6	9
12	Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut, 2021, 70, 1325-1334.	12.1	44
13	Rare Variants in the DNA Repair Pathway and the Risk of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 895-903.	2.5	3
14	Causal Effects of Lifetime Smoking on Breast and Colorectal Cancer Risk: Mendelian Randomization Study. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 953-964.	2.5	15
15	Response to Li and Hopper. American Journal of Human Genetics, 2021, 108, 527-529.	6.2	5
16	Differences in Melanoma Between Canada and New South Wales, Australia: A Population-Based Genes, Environment, and Melanoma (GEM) Study. JID Innovations, 2021, 1, 100002.	2.4	1
17	Prospective genomic testing of unselected cancer patients yields insights about cancer susceptibility and noncancer disease with therapeutic implications Journal of Clinical Oncology, 2021, 39, 10603-10603.	1.6	0
18	Nongenetic Determinants of Risk forÂEarly-Onset Colorectal Cancer. JNCI Cancer Spectrum, 2021, 5, pkab029.	2.9	39

STEPHEN B GRUBER

#	Article	IF	CITATIONS
19	The City of Hope POSEIDON enterprise-wide platform for real-world data and evidence in cancer Journal of Clinical Oncology, 2021, 39, e18813-e18813.	1.6	2
20	A Combined Proteomics and Mendelian Randomization Approach to Investigate the Effects of Aspirin-Targeted Proteins on Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 564-575.	2.5	10
21	Disease-Associated Risk Variants in <i>ANRIL</i> Are Associated with Tumor-Infiltrating Lymphocyte Presence in Primary Melanomas in the Population-Based GEM Study. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 2309-2316.	2.5	2
22	Salicylic Acid and Risk of Colorectal Cancer: A Two-Sample Mendelian Randomization Study. Nutrients, 2021, 13, 4164.	4.1	3
23	Association of Melanoma-Risk Variants with Primary Melanoma Tumor Prognostic Characteristics and Melanoma-Specific Survival in the GEM Study. Current Oncology, 2021, 28, 4756-4771.	2.2	1
24	Inherited Melanoma Risk Variants Associated with Histopathologically Amelanotic Melanoma. Journal of Investigative Dermatology, 2020, 140, 918-922.e7.	0.7	1
25	Cumulative Burden of Colorectal Cancer–Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer. Gastroenterology, 2020, 158, 1274-1286.e12.	1.3	110
26	Circulating Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3 Associate With Risk of Colorectal Cancer Based on Serologic and Mendelian Randomization Analyses. Gastroenterology, 2020, 158, 1300-1312.e20.	1.3	90
27	Cancer Risks Associated With Germline <i>PALB2</i> Pathogenic Variants: An International Study of 524 Families. Journal of Clinical Oncology, 2020, 38, 674-685.	1.6	270
28	Lymphocytic infiltration in stage II microsatellite stable colorectal tumors: A retrospective prognosis biomarker analysis. PLoS Medicine, 2020, 17, e1003292.	8.4	25
29	Inhibition of poly(ADP-ribose) polymerase induces synthetic lethality in BRIP1 deficient ovarian epithelial cells. Gynecologic Oncology, 2020, 159, 869-876.	1.4	3
30	Exploratory Genome-Wide Interaction Analysis of Nonsteroidal Anti-inflammatory Drugs and Predicted Gene Expression on Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1800-1808.	2.5	1
31	Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk. American Journal of Human Genetics, 2020, 107, 432-444.	6.2	124
32	Circulating bilirubin levels and risk of colorectal cancer: serological and Mendelian randomization analyses. BMC Medicine, 2020, 18, 229.	5.5	28
33	A general framework for functionally informed set-based analysis: Application to a large-scale colorectal cancer study. PLoS Genetics, 2020, 16, e1008947.	3.5	6
34	Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study. BMC Medicine, 2020, 18, 396.	5.5	76
35	Association of Known Melanoma Risk Factors with Primary Melanoma of the Scalp and Neck. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2203-2210.	2.5	6
36	Mendelian Randomization of Circulating Polyunsaturated Fatty Acids and Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 860-870.	2.5	26

STEPHEN B GRUBER

#	Article	IF	CITATIONS
37	Functional informed genomeâ€wide interaction analysis of body mass index, diabetes and colorectal cancer risk. Cancer Medicine, 2020, 9, 3563-3573.	2.8	7
38	Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nature Communications, 2020, 11, 3353.	12.8	75
39	The Prognostic Implications of Tumor Infiltrating Lymphocytes in Colorectal Cancer: A Systematic Review and Meta-Analysis. Scientific Reports, 2020, 10, 3360.	3.3	172
40	Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in <i>RAD51C</i> and <i>RAD51D</i> . Journal of the National Cancer Institute, 2020, 112, 1242-1250.	6.3	106
41	Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis. Nature Communications, 2020, 11, 597.	12.8	193
42	Advancing precision medicine in clinical oncology: Whole exome paired tumor-normal DNA and RNA sequencing at a single-institution cancer center Journal of Clinical Oncology, 2020, 38, e14006-e14006.	1.6	0
43	Cancer risk and overall survival in APC 11307K carriers Journal of Clinical Oncology, 2020, 38, 1592-1592.	1.6	1
44	Novel Common Genetic Susceptibility Loci for Colorectal Cancer. Journal of the National Cancer Institute, 2019, 111, 146-157.	6.3	129
45	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	12.8	88
46	Large-Scale Genome-Wide Association Study of East Asians Identifies Loci Associated With Risk for Colorectal Cancer. Gastroenterology, 2019, 156, 1455-1466.	1.3	111
47	Discovery of common and rare genetic risk variants for colorectal cancer. Nature Genetics, 2019, 51, 76-87.	21.4	377
48	Determining Risk of Colorectal Cancer and Starting Age of Screening Based on Lifestyle, Environmental, and Genetic Factors. Gastroenterology, 2018, 154, 2152-2164.e19.	1.3	226
49	Outcomes of Chemotherapy for Microsatellite Instable–High Metastatic Colorectal Cancers. JCO Precision Oncology, 2018, 2, 1-10.	3.0	15
50	Inherited variation in circadian rhythm genes and risks of prostate cancer and three other cancer sites in combined cancer consortia. International Journal of Cancer, 2017, 141, 1794-1802.	5.1	28
51	Quantifying the Genetic Correlation between Multiple Cancer Types. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1427-1435.	2.5	48
52	The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 126-135.	2.5	278
53	Unexpected <i>CDH1</i> Mutations Identified on Multigene Panels Pose Clinical Management Challenges. JCO Precision Oncology, 2017, 1, 1-12.	3.0	29
54	Nevus count associations with pigmentary phenotype, histopathological melanoma characteristics and survival from melanoma. International Journal of Cancer, 2016, 139, 1217-1222.	5.1	11

Stephen B Gruber

#	Article	IF	CITATIONS
55	Coffee Consumption and the Risk of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 634-639.	2.5	68
56	Telomere structure and maintenance gene variants and risk of five cancer types. International Journal of Cancer, 2016, 139, 2655-2670.	5.1	43
57	Variants in autophagyâ€related genes and clinical characteristics in melanoma: a populationâ€based study. Cancer Medicine, 2016, 5, 3336-3345.	2.8	23
58	Tumor-Infiltrating Lymphocytes, Crohn's-Like Lymphoid Reaction, and Survival From Colorectal Cancer. Journal of the National Cancer Institute, 2016, 108, .	6.3	162
59	A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 193-200.	2.5	66
60	Association of Interferon Regulatory Factor-4 Polymorphism rs12203592 With Divergent Melanoma Pathways. Journal of the National Cancer Institute, 2016, 108, djw004.	6.3	28
61	Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk. Gastroenterology, 2016, 150, 1633-1645.	1.3	97
62	Increased yield of actionable mutations using multi-gene panels to assess hereditary cancer susceptibility in an ethnically diverse clinical cohort. Cancer Genetics, 2016, 209, 130-137.	0.4	68
63	Safety of multiplex gene testing for inherited cancer risk: Interim analysis of a clinical trial Journal of Clinical Oncology, 2016, 34, 1503-1503.	1.6	1
64	A Germline Variant on Chromosome 4q31.1 Associates with Susceptibility to Developing Colon Cancer Metastasis. PLoS ONE, 2016, 11, e0146435.	2.5	2
65	Yield of multiplex panel testing compared to expert opinion and validated prediction models Journal of Clinical Oncology, 2016, 34, 1509-1509.	1.6	0
66	Inherited Variation at MC1R and Histological Characteristics of Primary Melanoma. PLoS ONE, 2015, 10, e0119920.	2.5	22
67	Association Between <i>NRAS</i> and <i>BRAF</i> Mutational Status and Melanoma-Specific Survival Among Patients With Higher-Risk Primary Melanoma. JAMA Oncology, 2015, 1, 359.	7.1	164
68	A homozygousPMS2founder mutation with an attenuated constitutional mismatch repair deficiency phenotype. Journal of Medical Genetics, 2015, 52, 348-352.	3.2	30
69	A Model to Determine Colorectal Cancer Risk Using Common Genetic Susceptibility Loci. Gastroenterology, 2015, 148, 1330-1339.e14.	1.3	129
70	Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nature Communications, 2015, 6, 7138.	12.8	138
71	Inherited Genetic Variants Associated with Occurrence of Multiple Primary Melanoma. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 992-997.	2.5	36
72	A genome-wide association study for colorectal cancer identifies a risk locus in 14q23.1. Human Genetics, 2015, 134, 1249-1262.	3.8	28

Stephen B Gruber

#	Article	IF	CITATIONS
73	MicroRNA Polymorphisms and Risk of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 65-72.	2.5	11
74	Sun Exposure and Melanoma Survival: A GEM Study. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2145-2152.	2.5	26
75	A novel colorectal cancer risk locus at 4q32.2 identified from an international genome-wide association study. Carcinogenesis, 2014, 35, 2512-2519.	2.8	30
76	Comparison of Clinicopathologic Features and Survival of Histopathologically Amelanotic and Pigmented Melanomas. JAMA Dermatology, 2014, 150, 1306.	4.1	142
77	Trans-ethnic genome-wide association study of colorectal cancer identifies a new susceptibility locus in VTI1A. Nature Communications, 2014, 5, 4613.	12.8	72
78	Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk. Nature Genetics, 2014, 46, 533-542.	21.4	212
79	Tumor-Infiltrating Lymphocyte Grade in Primary Melanomas Is Independently Associated With Melanoma-Specific Survival in the Population-Based Genes, Environment and Melanoma Study. Journal of Clinical Oncology, 2013, 31, 4252-4259.	1.6	232
80	Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology, 2013, 144, 799-807.e24.	1.3	292
81	Transcriptome Profiling Identifies HMGA2 as a Biomarker of Melanoma Progression and Prognosis. Journal of Investigative Dermatology, 2013, 133, 2585-2592.	0.7	96
82	Clinicopathologic Features of Incident and Subsequent Tumors in Patients with Multiple Primary Cutaneous Melanomas. Annals of Surgical Oncology, 2012, 19, 1024-1033.	1.5	45
83	Vitamin D receptor polymorphisms in patients with cutaneous melanoma. International Journal of Cancer, 2012, 130, 405-418.	5.1	61
84	Meta-analysis of new genome-wide association studies of colorectal cancer risk. Human Genetics, 2012, 131, 217-234.	3.8	183
85	Identification and functional characterization of a novel MUTYH gene mutation Journal of Clinical Oncology, 2012, 30, e12026-e12026.	1.6	0
86	Microsatellite instability in colorectal cancer—the stable evidence. Nature Reviews Clinical Oncology, 2010, 7, 153-162.	27.6	736
87	Genetic variation in 8q24 associated with risk of colorectal cancer. Cancer Biology and Therapy, 2007, 6, 1143-1147.	3.4	70
88	CDKN2A Germline Mutations in Individuals with Cutaneous Malignant Melanoma. Journal of Investigative Dermatology, 2007, 127, 1234-1243.	0.7	50
89	A design for cancer case–control studies using only incident cases: experience with the GEM study of melanoma. International Journal of Epidemiology, 2006, 35, 756-764.	1.9	67
90	Polymorphisms in nucleotide excision repair genes and risk of multiple primary melanoma: the Genes Environment and Melanoma Study. Carcinogenesis, 2006, 27, 610-618.	2.8	92

STEPHEN B GRUBER

#	Article	IF	CITATIONS
91	Statins and the Risk of Colorectal Cancer. New England Journal of Medicine, 2005, 352, 2184-2192.	27.0	706
92	Familial aggregation of melanoma risks in a large population-based sample of melanoma cases. Cancer Causes and Control, 2004, 15, 957-965.	1.8	26
93	R726L androgen receptor mutation is uncommon in prostate cancer families in the united states. Prostate, 2003, 54, 306-309.	2.3	19