Tom Beeckman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1751925/publications.pdf

Version: 2024-02-01

218 papers

26,056 citations

84 h-index 153 g-index

239 all docs 239 docs citations

times ranked

239

17520 citing authors

#	Article	IF	CITATIONS
1	Auxin's origin: do PILS hold the key?. Trends in Plant Science, 2022, 27, 227-236.	4.3	11
2	Transcriptional Analysis in the Arabidopsis Roots Reveals New Regulators that Link <i>rac</i> GR24 Treatment with Changes in Flavonol Accumulation, Root Hair Elongation and Lateral Root Density. Plant and Cell Physiology, 2022, 63, 104-119.	1.5	5
3	Two phylogenetically unrelated peptideâ€receptor modules jointly regulate lateral root initiation via a partially shared signaling pathway in <i>Arabidopsis thaliana</i> . New Phytologist, 2022, 233, 1780-1796.	3.5	10
4	Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots. Journal of Experimental Botany, 2022, , .	2.4	4
5	Translational profile of developing phellem cells in <i>Arabidopsis thaliana</i> roots. Plant Journal, 2022, 110, 899-915.	2.8	9
6	Spatiotemporal development of suberized barriers in cork oak taproots. Tree Physiology, 2022, 42, 1269-1285.	1.4	4
7	<scp>CROWN ROOTLESS1</scp> binds <scp>DNA</scp> with a relaxed specificity and activates <i>OsROP</i> and <i>OsbHLH044</i> genes involved in crown root formation in rice. Plant Journal, 2022, 111, 546-566.	2.8	7
8	ABA represses TOR and root meristem activity through nuclear exit of the SnRK1 kinase. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	29
9	Auxin-Regulated Reversible Inhibition of TMK1 Signaling by MAKR2 Modulates the Dynamics of Root Gravitropism. Current Biology, 2021, 31, 228-237.e10.	1.8	39
10	Modulation of <i>Arabidopsis</i> root growth by specialized triterpenes. New Phytologist, 2021, 230, 228-243.	3.5	20
11	Dissecting cholesterol and phytosterol biosynthesis via mutants and inhibitors. Journal of Experimental Botany, 2021, 72, 241-253.	2.4	16
12	An auxin-regulable oscillatory circuit drives the root clock in <i>Arabidopsis</i> . Science Advances, 2021, 7, .	4.7	46
13	Lateral root formation and nutrients: nitrogen in the spotlight. Plant Physiology, 2021, 187, 1104-1116.	2.3	27
14	Seedling developmental defects upon blocking CINNAMATEâ€4â€HYDROXYLASE are caused by perturbations in auxin transport. New Phytologist, 2021, 230, 2275-2291.	3.5	27
15	The mechanism of auxin transport in lateral root spacing. Molecular Plant, 2021, 14, 708-710.	3.9	7
16	Lateral Root Initiation and the Analysis of Gene Function Using Genome Editing with CRISPR in Arabidopsis. Genes, 2021, 12, 884.	1.0	16
17	The Arabidopsis Root Tip (Phospho)Proteomes at Growth-Promoting versus Growth-Repressing Conditions Reveal Novel Root Growth Regulators. Cells, 2021, 10, 1665.	1.8	8
18	Nature and Nurture: Genotype-Dependent Differential Responses of Root Architecture to Agar and Soil Environments. Genes, 2021, 12, 1028.	1.0	6

#	Article	IF	Citations
19	CYCLIC NUCLEOTIDE-GATED ION CHANNEL 2 modulates auxin homeostasis and signaling. Plant Physiology, 2021, 187, 1690-1703.	2.3	18
20	A reflux-and-growth mechanism explains oscillatory patterning of lateral root branching sites. Developmental Cell, 2021, 56, 2176-2191.e10.	3.1	35
21	Periodic root branching is influenced by light through an HY1-HY5-auxin pathway. Current Biology, 2021, 31, 3834-3847.e5.	1.8	27
22	The for Novel Inhibitors of Auxin-Induced Ca2+ Signaling. Methods in Molecular Biology, 2021, 2213, 89-98.	0.4	1
23	Early "Rootprints―of Plant Terrestrialization: Selaginella Root Development Sheds Light on Root Evolution in Vascular Plants. Frontiers in Plant Science, 2021, 12, 735514.	1.7	4
24	Plant signaling: Interplay of brassinosteroids and auxin in root meristems. Current Biology, 2021, 31, R1392-R1395.	1.8	3
25	The Phloem Intercalated With Xylem-Correlated 3 Receptor-Like Kinase Constitutively Interacts With Brassinosteroid Insensitive 1 -Associated Receptor Kinase 1 and Is Involved in Vascular Development in Arabidopsis. Frontiers in Plant Science, 2021, 12, 706633.	1.7	6
26	Genetic Variability of Arabidopsis thaliana Mature Root System Architecture and Genome-Wide Association Study. Frontiers in Plant Science, 2021, 12, 814110.	1.7	3
27	The evolutionary trajectory of root stem cells. Current Opinion in Plant Biology, 2020, 53, 23-30.	3.5	12
28	Peptide-Receptor Signaling Controls Lateral Root Development. Plant Physiology, 2020, 182, 1645-1656.	2.3	20
29	Rice plants respond to ammonium stress by adopting a helical root growth pattern. Plant Journal, 2020, 104, 1023-1037.	2.8	31
30	A pHantastic ammonium response. Nature Plants, 2020, 6, 1080-1081.	4.7	4
31	An MAP Kinase Cascade Downstream of RGF/GLV Peptides and Their RGI Receptors Regulates Root Development. Molecular Plant, 2020, 13, 1542-1544.	3.9	6
32	GOLVEN peptide signalling through RGI receptors and MPK6 restricts asymmetric cell division during lateral root initiation. Nature Plants, 2020, 6, 533-543.	4.7	39
33	Arabidopsis Lectin EULS3 Is Involved in ABA Signaling in Roots. Frontiers in Plant Science, 2020, 11, 437.	1.7	13
34	Pericyclic versus Endodermal Lateral Roots: Which Came First?. Trends in Plant Science, 2020, 25, 727-729.	4.3	2
35	The CEP5 Peptide Promotes Abiotic Stress Tolerance, As Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis. Molecular and Cellular Proteomics, 2020, 19, 1248-1262.	2.5	35
36	Overexpression of the NMig1 Gene Encoding a NudC Domain Protein Enhances Root Growth and Abiotic Stress Tolerance in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 815.	1.7	11

#	Article	IF	Citations
37	Exploiting natural variation in root system architecture via genome-wide association studies. Journal of Experimental Botany, 2020, 71, 2379-2389.	2.4	21
38	The dynamic nature and regulation of the root clock. Development (Cambridge), 2020, 147, .	1.2	41
39	Cadmium stress suppresses lateral root formation by interfering with the root clock. Plant, Cell and Environment, 2019, 42, 3182-3196.	2.8	18
40	Tom Beeckman. Current Biology, 2019, 29, R1058-R1059.	1.8	0
41	CRISPR-TSKO: A Technique for Efficient Mutagenesis in Specific Cell Types, Tissues, or Organs in Arabidopsis. Plant Cell, 2019, 31, 2868-2887.	3.1	171
42	TPX2-LIKE PROTEIN3 Is the Primary Activator of \hat{l}_{\pm} -Aurora Kinases and Is Essential for Embryogenesis. Plant Physiology, 2019, 180, 1389-1405.	2.3	16
43	Molecular and Environmental Regulation of Root Development. Annual Review of Plant Biology, 2019, 70, 465-488.	8.6	224
44	Tackling Plant Phosphate Starvation by the Roots. Developmental Cell, 2019, 48, 599-615.	3.1	99
45	EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8597-8602.	3.3	71
46	Identification of Novel Inhibitors of Auxin-Induced Ca ²⁺ Signaling via a Plant-Based Chemical Screen. Plant Physiology, 2019, 180, 480-496.	2.3	18
47	Root Branching Is Not Induced by Auxins in Selaginella moellendorffii. Frontiers in Plant Science, 2019, 10, 154.	1.7	12
48	The evolution of root branching: increasing the level of plasticity. Journal of Experimental Botany, 2019, 70, 785-793.	2.4	64
49	Auxin Function in the Brown Alga <i>Dictyota dichotoma</i> . Plant Physiology, 2019, 179, 280-299.	2.3	24
50	Unraveling a Local Inhibitory Mechanism Safeguarding Regular Lateral Root Spacing. Developmental Cell, 2019, 48, 13-14.	3.1	0
51	Nitrification in agricultural soils: impact, actors and mitigation. Current Opinion in Biotechnology, 2018, 50, 166-173.	3.3	258
52	Arabidopsis research requires a critical re-evaluation of genetic tools. Journal of Experimental Botany, 2018, 69, 3541-3544.	2.4	9
53	Calcium Ion Dynamics in Roots: Imaging and Analysis. Methods in Molecular Biology, 2018, 1761, 115-130.	0.4	7
54	Long-Term In Vivo Imaging of Luciferase-Based Reporter Gene Expression in Arabidopsis Roots. Methods in Molecular Biology, 2018, 1761, 177-190.	0.4	15

#	Article	lF	Citations
55	The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact with Water. Current Biology, 2018, 28, 3165-3173.e5.	1.8	94
56	Multi-Parametric Screening in Arabidopsis thaliana Seedlings. Methods in Molecular Biology, 2018, 1795, 1-7.	0.4	0
57	Pharmacological Strategies for Manipulating Plant Ca2+ Signalling. International Journal of Molecular Sciences, 2018, 19, 1506.	1.8	34
58	A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation. Plant Cell, 2018, 30, 2330-2351.	3.1	107
59	Microbes: The Right Target To Feed The World And Protect Nature?. , 2018, , .		0
60	Two-step cell polarization in algal zygotes. Nature Plants, 2017, 3, 16221.	4.7	13
61	PHR1 Balances between Nutrition and Immunity in Plants. Developmental Cell, 2017, 41, 5-7.	3.1	16
62	Plant nitrogen nutrition: sensing and signaling. Current Opinion in Plant Biology, 2017, 39, 57-65.	3.5	178
63	Egg activation-triggered shape change in the Dictyota dichotoma (Phaeophyceae) zygote is actin–myosin and secretion dependent. Annals of Botany, 2017, 120, 529-538.	1.4	3
64	Phosphorylation of MAP65-1 by Arabidopsis Aurora Kinases Is Required for Efficient Cell Cycle Progression. Plant Physiology, 2017, 173, 582-599.	2.3	44
65	Dynamic control of lateral root positioning. Current Opinion in Plant Biology, 2017, 35, 1-7.	3.5	50
66	Alteration in Auxin Homeostasis and Signaling by Overexpression Of PINOID Kinase Causes Leaf Growth Defects in Arabidopsis thaliana. Frontiers in Plant Science, 2017, 8, 1009.	1.7	27
67	RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation. Journal of Experimental Botany, 2016, 67, 4863-4875.	2.4	66
68	CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis. Journal of Experimental Botany, 2016, 67, 4889-4899.	2.4	81
69	RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development (Cambridge), 2016, 143, 3328-39.	1.2	152
70	The SBT6.1 subtilase processes the GOLVEN1 peptide controlling cell elongation. Journal of Experimental Botany, 2016, 67, 4877-4887.	2.4	51
71	Lateral Root Inducible System in Arabidopsis and Maize. Journal of Visualized Experiments, 2016, , e53481.	0.2	5
72	PP2A-3 interacts with ACR4 and regulates formative cell division in the <i>Arabidopsis</i> root. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1447-1452.	3.3	43

#	Article	IF	CITATIONS
73	Cyclic programmed cell death stimulates hormone signaling and root development in <i>Arabidopsis</i> . Science, 2016, 351, 384-387.	6.0	186
74	Abiotic regulation of growth and fertility in the sporophyte of Dictyota dichotoma (Hudson) J.V. Lamouroux (Dictyotales, Phaeophyceae). Journal of Applied Phycology, 2016, 28, 2915-2924.	1.5	20
75	Aurora Kinases Throughout Plant Development. Trends in Plant Science, 2016, 21, 69-79.	4.3	23
76	Strigolactones spatially influence lateral root development through the cytokinin signaling network. Journal of Experimental Botany, 2016, 67, 379-389.	2.4	58
77	Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays. Journal of Experimental Botany, 2015, 66, 5257-5269.	2.4	71
78	Ethylene-Mediated Regulation of A2-Type CYCLINs Modulates Hyponastic Growth in Arabidopsis Â. Plant Physiology, 2015, 169, 194-208.	2.3	22
79	A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications, 2015, 6, 8821.	5.8	70
80	The GLV6/RGF8/CLEL2 peptide regulates early pericycle divisions during lateral root initiation. Journal of Experimental Botany, 2015, 66, 5245-5256.	2.4	56
81	Photopolarization of Fucus zygotes is determined by time sensitive vectorial addition of environmental cues during axis amplification. Frontiers in Plant Science, 2015, 6, 26.	1.7	8
82	Root Cap-Derived Auxin Pre-patterns the Longitudinal Axis of the Arabidopsis Root. Current Biology, 2015, 25, 1381-1388.	1.8	173
83	Calcium is an organizer of cell polarity in plants. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2168-2172.	1.9	35
84	Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications, 2015, 6, 8717.	5.8	108
85	OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice Plant Physiology, 2015, 169, pp.01192.2015.	2.3	81
86	Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nature Communications, 2015, 6, 8822.	5.8	74
87	Transverse Sectioning of Arabidopsis thaliana Leaves Using Resin Embedding. Bio-protocol, 2015, 5, .	0.2	6
88	A mi <scp>R</scp> 169 isoform regulates specific <scp>NF</scp> â€ <scp>YA</scp> targets and root architecture in <scp>A</scp> rabidopsis. New Phytologist, 2014, 202, 1197-1211.	3.5	192
89	A new role for glutathione in the regulation of root architecture linked to strigolactones. Plant, Cell and Environment, 2014, 37, 488-498.	2.8	65
90	Cell-to-Cell Communication during Lateral Root Development. Molecular Plant, 2014, 7, 758-760.	3.9	8

#	Article	IF	CITATIONS
91	The Emerging Role of Reactive Oxygen Species Signaling during Lateral Root Development. Plant Physiology, 2014, 165, 1105-1119.	2.3	121
92	A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nature Cell Biology, 2014, 16, 66-76.	4.6	245
93	Auxin transport and activity regulate stomatal patterning and development. Nature Communications, 2014, 5, 3090.	5.8	118
94	<i>Arabidopsis</i> NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science, 2014, 345, 933-937.	6.0	173
95	Integration of growth and patterning during vascular tissue formation in <i>Arabidopsis</i> . Science, 2014, 345, 1255215.	6.0	286
96	The Interplay Between Auxin and the Cell Cycle During Plant Development., 2014,, 119-141.		4
97	Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves. Journal of Experimental Botany, 2014, 65, 6385-6397.	2.4	90
98	Pericycle. Current Biology, 2014, 24, R378-R379.	1.8	32
99	Fully Automated Compound Screening in Arabidopsis thaliana Seedlings. Methods in Molecular Biology, 2014, 1056, 3-9.	0.4	0
100	Traffic Control in the Root: Keeping Root Branching in Check. Developmental Cell, 2013, 26, 113-114.	3.1	3
101	Post-embryonic root organogenesis in cereals: branching out from model plants. Trends in Plant Science, 2013, 18, 459-467.	4.3	142
102	Tightly controlled WRKY23 expression mediates Arabidopsis embryo development. EMBO Reports, 2013, 14, 1136-1142.	2.0	61
103	To branch or not to branch: the role of pre-patterning in lateral root formation. Development (Cambridge), 2013, 140, 4301-4310.	1.2	137
104	Comparative transcriptomics as a tool for the identification of root branching genes in maize. Plant Biotechnology Journal, 2013, 11, 1092-1102.	4.1	54
105	Differences in dichogamy and herkogamy contribute to higher selfing in contrasting environments in the annual Blackstonia perfoliata (Gentianaceae). Annals of Botany, 2013, 111, 651-661.	1.4	41
106	The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development. Journal of Experimental Botany, 2013, 64, 5371-5381.	2.4	92
107	Message in a bottle: small signalling peptide outputs during growth and development. Journal of Experimental Botany, 2013, 64, 5281-5296.	2.4	104
108	Synthetic molecules: helping to unravel plant signal transduction. Journal of Chemical Biology, 2013, 6, 43-50.	2.2	16

#	Article	IF	Citations
109	Inducible System for Lateral Roots in Arabidopsis thaliana and Maize. Methods in Molecular Biology, 2013, 959, 149-158.	0.4	12
110	Lateral root development in Arabidopsis: fifty shades of auxin. Trends in Plant Science, 2013, 18, 450-458.	4.3	536
111	Adventitious Root Induction in Arabidopsis thaliana as a Model for In Vitro Root Organogenesis. Methods in Molecular Biology, 2013, 959, 159-175.	0.4	35
112	GOLVEN peptides as important regulatory signalling molecules of plant development. Journal of Experimental Botany, 2013, 64, 5263-5268.	2.4	38
113	Overexpression of the Trehalase Gene <i>AtTRE1</i> Leads to Increased Drought Stress Tolerance in Arabidopsis and Is Involved in Abscisic Acid-Induced Stomatal Closure Â. Plant Physiology, 2013, 161, 1158-1171.	2.3	117
114	Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Molecular Systems Biology, 2013, 9, 699.	3.2	104
115	Redundant and non-redundant roles of the trehalose-6-phosphate phosphatases in leaf growth, root hair specification and energy-responses in Arabidopsis. Plant Signaling and Behavior, 2013, 8, e23209.	1.2	20
116	Transcriptional and Functional Classification of the GOLVEN/ROOT GROWTH FACTOR/CLE-Like Signaling Peptides Reveals Their Role in Lateral Root and Hair Formation Â. Plant Physiology, 2013, 161, 954-970.	2.3	113
117	Small-Molecule Screens to Study Lateral Root Development. Methods in Molecular Biology, 2013, 959, 189-195.	0.4	18
118	<i>In silico</i> analyses of pericycle cell populations reinforce their relation with associated vasculature in <i>Arabidopsis</i> Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1479-1488.	1.8	27
119	Plasma Membrane Calcium ATPases Are Important Components of Receptor-Mediated Signaling in Plant Immune Responses and Development Â. Plant Physiology, 2012, 159, 798-809.	2.3	112
120	Analyzing Lateral Root Development: How to Move Forward. Plant Cell, 2012, 24, 15-20.	3.1	125
121	A role for the root cap in root branching revealed by the non-auxin probe naxillin. Nature Chemical Biology, 2012, 8, 798-805.	3.9	118
122	Transcription factor WRKY23 assists auxin distribution patterns during <i>Arabidopsis</i> root development through local control on flavonol biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1554-1559.	3.3	184
123	Repression of early lateral root initiation events by transient water deficit in barley and maize. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1534-1541.	1.8	36
124	Strigolactones Are Involved in Root Response to Low Phosphate Conditions in Arabidopsis Â. Plant Physiology, 2012, 160, 1329-1341.	2.3	191
125	Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4668-4673.	3.3	304
126	Expansive Evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE Gene Family in Arabidopsis Â. Plant Physiology, 2012, 160, 884-896.	2.3	120

#	Article	IF	Citations
127	Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches. Plant Cell, 2012, 24, 2262-2278.	3.1	155
128	Auxin and Epigenetic Regulation of <i>SKP2B</i> , an F-Box That Represses Lateral Root Formation \hat{A} \hat{A} . Plant Physiology, 2012, 160, 749-762.	2.3	74
129	Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea Â. Plant Physiology, 2012, 158, 1976-1987.	2.3	286
130	Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO Journal, 2012, 32, 149-158.	3.5	148
131	SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO Journal, 2012, 32, 260-274.	3.5	152
132	Phloem-associated auxin response maxima determine radial positioning of lateral roots in maize. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1525-1533.	1.8	67
133	GOLVEN Secretory Peptides Regulate Auxin Carrier Turnover during Plant Gravitropic Responses. Developmental Cell, 2012, 22, 678-685.	3.1	182
134	A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature, 2012, 482, 103-106.	13.7	664
135	<i>Arabidopsis</i> \hat{l} ± Aurora Kinases Function in Formative Cell Division Plane Orientation. Plant Cell, 2011, 23, 4013-4024.	3.1	97
136	Developmental regulation of CYCA2s contributes to tissue-specific proliferation in <i> Arabidopsis </i> EMBO Journal, 2011, 30, 3430-3441.	3.5	113
137	Asymmetric cell division in land plants and algae: the driving force for differentiation. Nature Reviews Molecular Cell Biology, 2011, 12, 177-188.	16.1	165
138	A novel protein family mediates Casparian strip formation in the endodermis. Nature, 2011, 473, 380-383.	13.7	353
139	Small-Molecule Dissection of Brassinosteroid Signaling. Methods in Molecular Biology, 2011, 876, 95-106.	0.4	4
140	Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 2011, 233, 209-216.	1.6	452
141	Model-Based Analysis of Arabidopsis Leaf Epidermal Cells Reveals Distinct Division and Expansion Patterns for Pavement and Guard Cells Â. Plant Physiology, 2011, 156, 2172-2183.	2.3	81
142	Unraveling the Evolution of Auxin Signaling Â. Plant Physiology, 2011, 155, 209-221.	2.3	140
143	Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6674-6679.	3.3	134
144	Auxin-Dependent Cell Cycle Reactivation through Transcriptional Regulation of <i> Arabidopsis E2Fa < /i > by Lateral Organ Boundary Proteins. Plant Cell, 2011, 23, 3671-3683.</i>	3.1	171

#	Article	IF	Citations
145	A Novel Aux/IAA28 Signaling Cascade Activates GATA23-Dependent Specification of Lateral Root Founder Cell Identity. Current Biology, 2010, 20, 1697-1706.	1.8	431
146	Cyclin-dependent kinase activity retains the shoot apical meristem cells in an undifferentiated state. Plant Journal, 2010, 64, no-no.	2.8	26
147	VisuaLRTC: A New View on Lateral Root Initiation by Combining Specific Transcriptome Data Sets Â. Plant Physiology, 2010, 153, 34-40.	2.3	56
148	Auxin Control of Root Development. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001537-a001537.	2.3	612
149	Bimodular auxin response controls organogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2705-2710.	3.3	271
150	Nitrate Contra Auxin: Nutrient Sensing by Roots. Developmental Cell, 2010, 18, 877-878.	3.1	16
151	The roots of a new green revolution. Trends in Plant Science, 2010, 15, 600-607.	4.3	390
152	Extensive expression regulation and lack of heterologous enzymatic activity of the Class II trehalose metabolism proteins from <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2009, 32, 1015-1032.	2.8	131
153	Systematic analysis of cell•ycle gene expression during Arabidopsis development. Plant Journal, 2009, 59, 645-660.	2.8	58
154	Receptor-like kinases shape the plant. Nature Cell Biology, 2009, 11, 1166-1173.	4.6	261
155	Gene silencing induced by hairpin or inverted repeated sense transgenes varies among promoters and cell types. New Phytologist, 2009, 184, 851-864.	3.5	30
156	Chemical Inhibition of a Subset of Arabidopsis thaliana GSK3-like Kinases Activates Brassinosteroid Signaling. Chemistry and Biology, 2009, 16, 594-604.	6.2	240
157	The Past, Present, and Future of Chemical Biology in Auxin Research. ACS Chemical Biology, 2009, 4, 987-998.	1.6	60
158	Arabidopsis lateral root development: an emerging story. Trends in Plant Science, 2009, 14, 399-408.	4.3	681
159	Manipulation of Auxin Transport in Plant Roots during <i>Rhizobium</i> Symbiosis and Nematode Parasitism. Plant Cell, 2009, 21, 2553-2562.	3.1	144
160	Pollen deposition rates and the functioning of distyly in the perennial Pulmonaria officinalis (Boraginaceae). Plant Systematics and Evolution, 2008, 273, 1-12.	0.3	51
161	The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology, 2008, 10, 946-954.	4.6	715
162	Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nature Genetics, 2008, 40, 1489-1492.	9.4	353

#	Article	IF	Citations
163	Receptor-Like Kinase ACR4 Restricts Formative Cell Divisions in the <i>Arabidopsis</i> Root. Science, 2008, 322, 594-597.	6.0	342
164	Diarch Symmetry of the Vascular Bundle in Arabidopsis Root Encompasses the Pericycle and Is Reflected in Distich Lateral Root Initiation. Plant Physiology, 2008, 146, 140-148.	2.3	163
165	A Role for AtWRKY23 in Feeding Site Establishment of Plant-Parasitic Nematodes. Plant Physiology, 2008, 148, 358-368.	2.3	145
166	Cytokinins Act Directly on Lateral Root Founder Cells to Inhibit Root Initiation. Plant Cell, 2008, 19, 3889-3900.	3.1	498
167	Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development (Cambridge), 2007, 134, 681-690.	1.2	540
168	Ethylene Regulates Root Growth through Effects on Auxin Biosynthesis and Transport-Dependent Auxin Distribution. Plant Cell, 2007, 19, 2197-2212.	3.1	682
169	Arabidopsis WEE1 Kinase Controls Cell Cycle Arrest in Response to Activation of the DNA Integrity Checkpoint. Plant Cell, 2007, 19, 211-225.	3.1	258
170	The ins and outs of the plant cell cycle. Nature Reviews Molecular Cell Biology, 2007, 8, 655-665.	16.1	314
171	A novel role for abscisic acid emerges from underground. Trends in Plant Science, 2006, 11, 434-439.	4.3	241
172	Lateral Root Initiation or the Birth of a New Meristem. Plant Molecular Biology, 2006, 60, 871-887.	2.0	248
173	A Hormone and Proteome Approach to Picturing the Initial Metabolic Events During Plasmodiophora brassicae Infection on Arabidopsis. Molecular Plant-Microbe Interactions, 2006, 19, 1431-1443.	1.4	133
174	Auxin regulation of cell cycle and its role during lateral root initiation. Physiologia Plantarum, 2005, 123, 139-146.	2.6	40
175	The Cyclin-Dependent Kinase Inhibitor KRP2 Controls the Onset of the Endoreduplication Cycle during Arabidopsis Leaf Development through Inhibition of Mitotic CDKA; 1 Kinase Complexes. Plant Cell, 2005, 17, 1723-1736.	3.1	248
176	Cell Cycle Progression in the Pericycle Is Not Sufficient for SOLITARY ROOT/IAA14-Mediated Lateral Root Initiation in Arabidopsis thaliana Â. Plant Cell, 2005, 17, 3035-3050.	3.1	309
177	Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development (Cambridge), 2005, 132, 4521-4531.	1.2	574
178	Transcript profiling of early lateral root initiation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5146-5151.	3.3	190
179	B1-Type Cyclin-Dependent Kinases Are Essential for the Formation of Stomatal Complexes in Arabidopsis thaliana. Plant Cell, 2004, 16, 945-955.	3.1	173
180	An easy and versatile embedding method for transverse sections. Journal of Microscopy, 2004, 213, 76-80.	0.8	45

#	Article	IF	CITATIONS
181	Disclosing the subterranean treasury of plants. Trends in Biotechnology, 2004, 22, 379-381.	4.9	3
182	Phenotypic alterations in Arabidopsis thaliana plants caused by Rhodococcus fascians infection. Journal of Plant Research, 2004, 117, 139-145.	1.2	26
183	An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant Journal, 2003, 33, 543-555.	2.8	402
184	Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant Journal, 2003, 33, 621-632.	2.8	272
185	Dissecting Arabidopsis lateral root development. Trends in Plant Science, 2003, 8, 165-171.	4.3	618
186	The Arabidopsis Locus RCB Mediates Upstream Regulation of Mitotic Gene Expression. Plant Physiology, 2003, 133, 1862-1872.	2.3	7
187	Genetic Complexity of Cellulose Synthase A Gene Function in Arabidopsis Embryogenesis. Plant Physiology, 2002, 130, 1883-1893.	2.3	116
188	Auxin-Mediated Cell Cycle Activation during Early Lateral Root Initiation. Plant Cell, 2002, 14, 2339-2351.	3.1	523
189	Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor. EMBO Journal, 2002, 21, 1360-1368.	3.5	373
190	Functional Analysis of Cyclin-Dependent Kinase Inhibitors of Arabidopsis. Plant Cell, 2001, 13, 1653-1668.	3.1	595
191	CKS1At overexpression in Arabidopsis thaliana inhibits growth by reducing meristem size and inhibiting cell-cycle progression. Plant Journal, 2001, 25, 617-626.	2.8	61
192	Auxin Transport Promotes Arabidopsis Lateral Root Initiation. Plant Cell, 2001, 13, 843-852.	3.1	930
193	Auxin Transport Promotes Arabidopsis Lateral Root Initiation. Plant Cell, 2001, 13, 843.	3.1	88
194	The peri-cell-cycle in Arabidopsis. Journal of Experimental Botany, 2001, 52, 403-411.	2.4	213
195	Functional Analysis of Cyclin-Dependent Kinase Inhibitors of Arabidopsis. Plant Cell, 2001, 13, 1653.	3.1	47
196	The peri―cell â€eycle in Arabidopsis. Journal of Experimental Botany, 2001, 52, 403-411.	2.4	76
197	Histological Study of Seed Coat Development in Arabidopsis thaliana. Journal of Plant Research, 2000, 113, 139-148.	1.2	166
198	Developmental expression of the Arabidopsis thaliana CycA2;1 gene. Planta, 2000, 211, 623-631.	1.6	70

#	Article	IF	Citations
199	Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta, 2000, 211, 632-640.	1.6	176
200	Increased leakiness of the tetracyclineâ€inducible Tripleâ€Op promoter in dividing cells renders it unsuitable for high inducible levels of a dominant negative CDC2aAt gene. Journal of Experimental Botany, 2000, 51, 1647-1653.	2.4	17
201	ABI3 Affects Plastid Differentiation in Dark-Grown Arabidopsis Seedlings. Plant Cell, 2000, 12, 35-52.	3.1	89
202	Embedding Thin Plant Specimens for Oriented Sectioning. Biotechnic and Histochemistry, 2000, 75, 23-26.	0.7	53
203	An easy technique for the clearing of histochemically stained plant tissue. Plant Molecular Biology Reporter, 1994, 12, 37-42.	1.0	116
204	Auxin Fuels the Cell Cycle Engine During Lateral Root Initiation. , 0, , 187-202.		3
205	Molecular and Genetic Dissection of Cereal Root System Development., 0,, 175-191.		4
206	Vascular Morphogenesis during Root Development., 0,, 39-63.		1
207	Root Epidermal Development inArabidopsis. , 0, , 64-82.		1
208	Arabidopsis Root Development. , 0, , 1-38.		3
209	Adventitious Root Formation: New Insights and Perspectives. , 0, , 127-156.		54
210	Studying Root Development Using a Genomic Approach., 0,, 325-351.		3
211	Lateral Root Formation. , 0, , 83-126.		10
212	Root Gravitropism., 0,, 157-174.		3
213	Legume Root Architecture: A Peculiar Root System. , 0, , 239-287.		5
214	Effect of Nutrient Availability on Root System Development., 0,, 288-324.		3
215	Fern Root Development., 0,, 192-208.		4
216	When Plants Socialize: Symbioses and Root Development. , 0, , 209-238.		9

#	Article	lF	CITATIONS
217	The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact With Water. SSRN Electronic Journal, 0, , .	0.4	1
218	Constitutive Active CPK30 Interferes With Root Growth and Endomembrane Trafficking in Arabidopsis thaliana. Frontiers in Plant Science, $0,13,.$	1.7	1