Hanrui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1751777/publications.pdf

Version: 2024-02-01

69 papers

3,997 citations

30 h-index 61 g-index

71 all docs

71 docs citations

times ranked

71

6963 citing authors

#	Article	IF	CITATIONS
1	Break on Through to the Other Side: How Trained Monocytes Promote Recovery From Hind Limb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 189-192.	2.4	O
2	Alternate Day Fasting Improves Endothelial Function in Type 2 Diabetic Mice: Role of Adipose-Derived Hormones. Frontiers in Cardiovascular Medicine, 2022, 9, .	2.4	4
3	Deficiency of macrophage PHACTR1 impairs efferocytosis and promotes atherosclerotic plaque necrosis. Journal of Clinical Investigation, 2021, 131, .	8.2	31
4	Clarifying the Distinct Roles of Smooth Muscle Cell–Derived Versus Macrophage Foam Cells and the Implications in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2035-2037.	2.4	4
5	What Makes a Great Mentor: Interviews With Recipients of the ATVB Mentor of Women Award. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2641-2647.	2.4	3
6	Abstract 11646: $\langle i \rangle$ ATVB Outstanding Research Award $\langle i \rangle$: WDFY3 is Required for the Efficient Degradation of Engulfed Apoptotic Cells by Macrophages During Efferocytosis. Circulation, 2021, 144, .	1.6	0
7	Abstract 10865: Elucidating the Variant-to-Function Relationship for LIPA, a Risk Locus of Coronary Artery Diseases. Circulation, 2021, 144, .	1.6	0
8	Single-Cell Genomics Reveals a Novel Cell State During Smooth Muscle Cell Phenotypic Switching and Potential Therapeutic Targets for Atherosclerosis in Mouse and Human. Circulation, 2020, 142, 2060-2075.	1.6	292
9	ASEP: Gene-based detection of allele-specific expression across individuals in a population by RNA sequencing. PLoS Genetics, 2020, 16, e1008786.	3.5	42
10	Novel mechanistic links between high-protein diets and atherosclerosis. Nature Metabolism, 2020, 2, 7-8.	11.9	1
11	Differentiation of Humanâ€Induced Pluripotent Stem Cells to Macrophages for Disease Modeling and Functional Genomics. Current Protocols in Stem Cell Biology, 2019, 48, e74.	3.0	18
12	Functional Characterization of LIPA (Lysosomal Acid Lipase) Variants Associated With Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2480-2491.	2.4	13
13	Functional Genomics and CRISPR Applied to Cardiovascular Research and Medicine. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e188-e194.	2.4	7
14	Lysosomal Acid Lipase in Lipid Metabolism and Beyond. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 850-856.	2.4	98
15	PennDiff: detecting differential alternative splicing and transcription by RNA sequencing. Bioinformatics, 2018, 34, 2384-2391.	4.1	14
16	Cholesterol Efflux Pathways Suppress Inflammasome Activation, NETosis, and Atherogenesis. Circulation, 2018, 138, 898-912.	1.6	208
17	Lysosomal acid lipase and lipid metabolism: new mechanisms, new questions, and new therapies. Current Opinion in Lipidology, 2018, 29, 218-223.	2.7	57
18	Who Done It?. Circulation Research, 2018, 123, 1106-1108.	4.5	6

#	Article	IF	CITATIONS
19	Tissue-Specific Differential Expression of Novel Genes and Long Intergenic Noncoding RNAs in Humans With Extreme Response to Evoked Endotoxemia. Circulation Genomic and Precision Medicine, 2018, 11 , e001907.	3.6	4
20	First Giant Steps Toward a Cell Atlas of Atherosclerosis. Circulation Research, 2018, 122, 1632-1634.	4.5	6
21	De novo RNA sequence assembly during in vivo inflammatory stress reveals hundreds of unannotated lincRNAs in human blood CD14+ monocytes and in adipose tissue. Physiological Genomics, 2017, 49, 287-305.	2.3	9
22	<i>LIPA</i> Variants in Genome-Wide Association Studies of Coronary Artery Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1015-1017.	2.4	15
23	Human Induced Pluripotent Stem Cell–Derived Macrophages for Unraveling Human Macrophage Biology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2000-2006.	2.4	25
24	CRISPR/Cas9-Mediated Gene Editing in Human iPSC-Derived Macrophage Reveals Lysosomal Acid Lipase Function in Human Macrophages—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2156-2160.	2.4	30
25	Deep RNA Sequencing Uncovers a Repertoire of Human Macrophage Long Intergenic Noncoding RNAs Modulated by Macrophage Activation and Associated With Cardiometabolic Diseases. Journal of the American Heart Association, 2017, 6, .	3.7	36
26	Synergistic Modulation of Inflammatory but not Metabolic Effects of Highâ€Fat Feeding by CCR2 and CX3CR1. Obesity, 2017, 25, 1410-1420.	3.0	7
27	Expression of Calgranulin Genes S100A8, S100A9 and S100A12 Is Modulated by n-3 PUFA during Inflammation in Adipose Tissue and Mononuclear Cells. PLoS ONE, 2017, 12, e0169614.	2.5	24
28	Interaction of IL-6 and TNF- \hat{l}_{\pm} contributes to endothelial dysfunction in type 2 diabetic mouse hearts. PLoS ONE, 2017, 12, e0187189.	2.5	95
29	Translational and Therapeutic Approaches to the Understanding and Treatment of Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, e56-61.	2.4	4
30	Transcriptome-Wide Analysis Reveals Modulation of Human Macrophage Inflammatory Phenotype Through Alternative Splicing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1434-1447.	2.4	35
31	From Loci to Biology. Circulation Research, 2016, 118, 586-606.	4.5	54
32	Regulation of Coronary Endothelial Function by Interactions between TNF- \hat{l}_{\pm} , LOX-1 and Adiponectin in Apolipoprotein E Knockout Mice. Journal of Vascular Research, 2015, 52, 372-382.	1.4	9
33	Circadian control of innate immunity in macrophages by miR-155 targeting <i>Bmal1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7231-7236.	7.1	244
34	ABO Blood Group as a Model for Platelet Glycan Modification in Arterial Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1570-1578.	2.4	32
35	Functional Analysis and Transcriptomic Profiling of iPSC-Derived Macrophages and Their Application in Modeling Mendelian Disease. Circulation Research, 2015, 117, 17-28.	4.5	120
36	IRF2BP2. Circulation Research, 2015, 117, 656-658.	4. 5	9

#	Article	IF	Citations
37	The long noncoding RNA landscape in hypoxic and inflammatory renal epithelial injury. American Journal of Physiology - Renal Physiology, 2015, 309, F901-F913.	2.7	70
38	Anti-Inflammatory Effects of High-Density Lipoprotein Through Activating Transcription Factor 3. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, e11-2.	2.4	9
39	Cholesterol and Lipoprotein Metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1791-1794.	2.4	18
40	Glycogenome signatures in complex cardiometabolic disease (789.4). FASEB Journal, 2014, 28, 789.4.	0.5	0
41	Vascular transcriptional alterations produced by juvenile obesity in Ossabaw swine. Physiological Genomics, 2013, 45, 434-446.	2.3	36
42	Adiponectin abates diabetes-induced endothelial dysfunction by suppressing oxidative stress, adhesion molecules, and inflammation in type 2 diabetic mice. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H106-H115.	3.2	54
43	ABO Blood Groups and Cardiovascular Diseases. International Journal of Vascular Medicine, 2012, 2012, 1-11.	1.0	67
44	Vasoprotection by Dietary Supplements and Exercise: Role of TNF <i>$\hat{l}\pm$Signaling. Experimental Diabetes Research, 2012, 2012, 1-6.</i>	3.8	23
45	Role of inflammation in the regulation of coronary blood flow in ischemia and reperfusion: Mechanisms and therapeutic implications. Journal of Molecular and Cellular Cardiology, 2012, 52, 865-872.	1.9	59
46	Diabetic Vascular Disease., 2012,, 1321-1328.		0
47	The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: an update. Basic Research in Cardiology, 2012, 107, 237.	5.9	104
48	Effect of PAR2 in regulating TNF- \hat{l}_{\pm} and NAD(P)H oxidase in coronary arterioles in type 2 diabetic mice. Basic Research in Cardiology, 2011, 106, 111-123.	5.9	61
49	Interferon-gamma induced adipose tissue inflammation is linked to endothelial dysfunction in type 2 diabetic mice. Basic Research in Cardiology, 2011, 106, 1135-1145.	5.9	31
50	Bariatric Surgery Reduces Visceral Adipose Inflammation and Improves Endothelial Function in Type 2 Diabetic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2063-2069.	2.4	58
51	New hypothesis for insulin resistance in hypertension due to receptor cleavage. Expert Review of Endocrinology and Metabolism, 2010, 5, 149-158.	2.4	22
52	Adipose "Talks―to Distant Organs to Regulate Insulin Sensitivity and Vascular Function. Obesity, 2010, 18, 2071-2076.	3.0	48
53	Resveratrol improves left ventricular diastolic relaxation in type 2 diabetes by inhibiting oxidative/nitrative stress: in vivo demonstration with magnetic resonance imaging. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H985-H994.	3.2	106
54	Coronary and Aortic Endothelial Function Affected by Feedback Between Adiponectin and Tumor Necrosis Factor \hat{l}_{\pm} in Type 2 Diabetic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2156-2163.	2.4	42

#	Article	IF	CITATIONS
55	The reciprocal relationship between adiponectin and LOX-1 in the regulation of endothelial dysfunction in ApoE knockout mice. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H605-H612.	3.2	39
56	New discovery of Netrin-1 in cardioprotection. Journal of Molecular and Cellular Cardiology, 2010, 48, 1033-1035.	1.9	2
57	Emerging role of adipokines as mediators in atherosclerosis. World Journal of Cardiology, 2010, 2, 370.	1.5	42
58	Feed-forward signaling of TNF-α and NF-κB via IKK-β pathway contributes to insulin resistance and coronary arteriolar dysfunction in type 2 diabetic mice. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1850-H1858.	3.2	101
59	Resveratrol Improves Endothelial Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1164-1171.	2.4	195
60	Vascular dysfunction in Type 2 diabetes: emerging targets for therapy. Expert Review of Cardiovascular Therapy, 2009, 7, 209-213.	1.5	13
61	Resveratrol induces mitochondrial biogenesis in endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H13-H20.	3.2	378
62	Role of TNF-α in vascular dysfunction. Clinical Science, 2009, 116, 219-230.	4.3	541
63	Role of MCP-1 in tumor necrosis factor-α-induced endothelial dysfunction in type 2 diabetic mice. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1208-H1216.	3.2	49
64	Regulation of Microvascular Function by Adipose Tissue in Obesity and Type 2 Diabetes: Evidence of an Adipose-Vascular. American Journal of Biomedical Sciences, 2009, 1, 133-142.	0.2	44
65	AGE/RAGE produces endothelial dysfunction in coronary arterioles in Type 2 diabetic mice. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H491-H498.	3.2	148
66	Role of TNF-α-induced reactive oxygen species in endothelial dysfunction during reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2242-H2249.	3.2	78
67	EXTRA VIRGIN OLIVE OIL AND VASCULAR HEALTH. FASEB Journal, 2008, 22, 63-63.	0.5	0
68	Resveratrol Protects against Oxidative Stressâ€Induced Endothelial Dysfunction in Type II Diabetes. FASEB Journal, 2008, 22, 42-42.	0.5	0
69	ILRUN Promotes Atherosclerosis Through Lipid-Dependent and Lipid-Independent Factors. Arteriosclerosis, Thrombosis, and Vascular Biology, 0, , .	2.4	2